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Abstract

We apply quantum group methods for noncommutative geometry @tleZ; lattice to obtain
a natural Dirac operator on this discrete space. This then leads to an interpretation of the Higgs
fields as the discrete part of space—time in the Connes—-Lott formalism for elementary particle La-
grangians. The model provides a setting where both the quantum groups and the Connes approach
to noncommutative geometry can be usefully combined, with some of Connes’ axioms, notably
the first-order condition, replaced by algebraic methods based on the group structure. The noncom-
mutative geometry has nontrivial cohomology and moduli of flat connections, both of which we
compute. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1,2], Connes and Lott proposed a framework for the standard model in elementary
particle physics based on a discrete and typically noncommutative part adjoined to con-
ventional space—time. Fields on this composite space-time appear as multiplets of fields
on ordinary space—time and, for the right choice of discrete part, one obtains exactly the
standard model of particle physics. The Dirac operator on the discrete part encodes the
masses of fermions on usual space—time. This approach ‘packages’ the standard model into
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an elegant framework where also the Higgs field arises naturally. However, most of the pa-
rameters of the standard model are still left undetermined because in the Connes approach
to noncommutative geometry almost any self-adjoint ope#atan be taken on the discrete

part of space—time in the role of Dirac.

Meanwhile coming from quantum groups is a ‘constructive’ approach to noncommutative
geometry which includes also finite groups and other discrete spaces. In this approach,
because of the existencegtieformed examples one keeps ‘eye contact’ with conventional
geometric ideas and thereby builds up the different layers of (noncommutative) geometry up
toandincluding, in recentwofB], the Dirac operator. In other words when the Connes—Lott
formalism and the quantum groups formalism are combined one has natural ‘geometric’
criteria for the choice of Dirac operator on the discrete space—time which translates directly
into predictions in elementary particle physics.

In this paper, we develop a nontrivial model for which these two approaches can be
combined in this way, and explore fully both approaches for this model. The model has
‘discrete part'Zy x Zp which has a commutative coordinate algebra but which we equip
with noncommutative differentials coming naturally from the quantum groups approach (a
bicovariant differential calculus in the sense of Woronowit}3. The model is too simple
to lead to exactly the standard model (for this one wants the honcommutative algebra
CoHe M3) but it exhibits many of the same features. Moreover, the modelis of independent
interest as a discrete (lattice) model of space—time useful in a variety of other contexts, e.g.
potentially for QCD.

In Section 2we explore the model using Connes’ formali§h)2]. Thus, starting with
the bicovariant differential calculus suggested by quantum group methods, we take the
natural two-dimensional Dirac operator and apply the method of Connes to induce an entire
exterior algebra, Hodge and other constructions on this discrete 2D ‘space—time’ (not to
be confused with conventional space—time of course but thought of in that way). We find
a Higgs-effect and aspects of symmetry breaking on this discrete space—time. Following
Connes, we work very explicitly with 1-forms and 2-forms, etc. as certain concrete matrices.
The higher forms are not so easily computed by these methods, however.

In Section 3 we construct this exterior algebra, etc. induced?dyom a more alge-
braic point of view using quantum group methods. Here the exterior algebra is obtained
as a quotient of the universal differential calculus by generators and relations, and not
concretely given by particular matrices. We show how many of the computations in the
Connes-Lott model building kit can be done more in line with classical constructions using
these algebraic quantum group methods. Using these methods we are then able to take
the computations oSection 2much further. We fully compute the exterior algebra, its
quantum de Rham cohomology and its moduli of zero curvature gauge fields, all of which
turn out to be nontrivial. We note that quantum group methods for the noncommutative
geometry on finite groups have recently been developed in some genf8d&ijtyinclud-
ing gravity and a first contact with Connes’ method which we use now (an analysis of the
2-forms). See alsf$] where the cohomology and gauge theory for the permutation group
S3 is recently computed. Th&, x Z, model can be viewed as another nontrivial non-
commutative geometry in this family. The use of noncommutative geometry for discrete
space—-time itself originates in the bilocal nature of finite difference differentials, and is quite
fundamental.
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In Section 4 we return to the physics by combining this discrete 2D space—time with
conventional space—time to pull out the resulting fairly straightforward model of particle
physics and some predictions ensuing form our particular ‘geometrical’ choi?e Inf
Section Swe look at a further chapter of Connes metlio@], namely the spectral action
and gravity, automorphisms and spin automorphisms.Zhe Z, model is again simple
enough that all aspects are computable explicitly.

Finally, in Section 6we conclude with some comments on the general latiiGg)”.

Using again our algebraic quantum group methods we show that similar features hold for
higher dimensiona{Z;)" but that on the other hand, fer > 2 the nontrivial features of
the model such as the Higgs potential disappear, i.e. are a very specific to theZigse of

2. The2x?2 lattice ala Connes—L ott

Inthis section, we apply the Connes—Lott model buildingKito a 2x 2 lattice described
by the associative, unital star algebra

A=C[Zsx Z3] > f(x,y), x,y=0,1 mod2 (1)
We define right translations inandy directions by

(Re )x,y) = fx+1y), (RyfH(x,y) == flx,y+ D), (2)
and the partial derivatives by

Oy =R, -1, dy =R, -1 (3
The following relations will be useful:

(R)*=1,  (R)?’=1  RRy=RyRs, )

()% = =28,  (8,)°=—20y, 8,0y = dydy, (5)

and the Leibniz rule

0x(fg) = (0x f)g + (Ry f)Oxg = (0x f)Rxg + fOxg. (6)
We define the Hilbert space of spinors
H:=A®(C231/f=(wR>, VR, YL €A (1)
149
with scalar product
1
W, 9) =Y [WRCe, PR, ¥) + YL, PL(x, v, ®)

x,y=0
and the faithful representatignof the algebrad on# by pointwise multiplication
(P(HY)(x,y) = fx, »P(x, y). 9)
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We will need the relation
(Rx ® 12)p(f) = p(Rx f)(Rx ® 12). (10)
The third input item is the Dirac operator that we take to be the lattice Dirac operator,
=0,y " +0,0y" (11)

with the Hermitian Pauli matrices

X . 01 y . 0 —i 3. 1 0
"“\1 0 7T\l o) 7V T o 1) (12)

They satisfy
2 ==l Y=yl =iy (13)

Note that this Dirac operator is self-adjoint without an imaginary i in front. Note also that
this Dirac operator like any lattice Dirac operator cannot satisfy Conagdirst-order
condition[11]. In the commutative case of a Riemannian spin manifold, this algebraic
condition reduces to the property that the Dirac operator is a first-order differential operator.
Even without the first-order condition we can use these three items, the aldelita
representation of{ and the Dirac operat@-to construct a Connes—Lott modé].

The first step involves an auxiliary differential algelsgani (A), the universal exterior
algebra ofA:

UnIV(A) - (14)
21, (A) is spanned over by symbols @, a € A with relations
di=0, d(ab) = (da)b + a db. (15)

Therefore it consists of finite sums of terms of the farguay,

unlv(.A) Zaé da{, aé, a{ e Ay, (16)
J

and likewise for highep,
bW =1 "alda] - daj.a) e A} . (17)

The differential d is defined by(do day - --dap) := dagday - - - da,. The involution* is
extended from the algebré to unIV(A) by putting

(da)* := —d(a*). (18)

Some authors, including Connes, Gde)* := d(a™) which amounts to replacing d byid.
With the definition(a8)* = B*a™* for formsca, 8, the involution is extended to the whole
universal exterior algebra.
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The next step is to extend the representatiam # from the algebrad to its universal
exterior algebra. This extension is the central piece of Connes’ algorithm:

7 @ Q2univ(A) — End(H), m(agday - - dap) := p(ao)[?, p(av)] - --[2, p(ap)].
(19)

A straightforward calculation shows thatis in fact a representation @2, (A) as an
algebra with involution, and we are tempted to define also a differential, denoted again by
d, on the images (2" (A)) in each degree by

univ

dr (o) ;= n(da) Vo € aniv(.A). (20)
However, this definition does not make sense if there are farsg2nivy (A) with 7 (@) = 0
andr (do) # 0. By dividing outthese unpleasant forms, Connes constructs a new differential

algebrafz@ (A), the interesting object

W(Quniv(A))

7 (21)

25(A) =
with
J = n(dkerr) = ®J, (22)
p

(J for junk). On the quotient now, the differentié?0) is well defined. Degree by degree
we have

25(A) = p(A) (23)
because/® = 0,

25(A) = 71(2np(A) (24)
because is faithful, and in degree > 2,

25 = fgﬁiﬁfg (29)

Herer,_1 denotesr restricted to degreg— 1 forms. We remind the motivation of Connes’
construction: in the continuur] the algebra of differentiable functions on the 2-torus and
 the genuine Dirac operata, (A) is de Rham's exterior algebra of differential forms.

In our lattice model all forms are explicit8 8 matrices. For example Bg. (28)

0 0 0
1 oo®<01) (26)
0 0 1 10

0010

Wy =

o O

with respect to the basis

800, 810, 801, 8 1 0
{600, 810, 01, 011} ® o\



6 S. Majid, T. Schiicker/Journal of Geometry and Physics 43 (2002) 1-26

Let us compute the 1-forms
7df) =12, p(H] = p@x HR @Y™ + pBy IR, @ y”. (27)

We denote bysoo, 810, 01, 11 € A the four delta functionsjgg for instance is one on
x = 0,y = 0 and zero on the other three points. Thé(i;(A) is spanned oved by the

two elements
wy =m0, XdX) =R, ® y*, wy =7,YdY) =R, ®y’, (28)

where we have puX := 810 + 811 andY = §p1 + §11. Our generators are Hermitian,
* __ * __

Wy = Wy, O] = Wy.
The 2-forms are represented by

m(dfdg) =p(0y f Rydxg + 3y f Rydyg) ® 12
+ 00 f Rxayg - ayfRyaxg)Rny ® VxVy’ (29)

and a straightforward calculation in a basis usiAfginctions shows that in degree 2 the
junk vanishes. 7> = 0. Therefore, we get

(a)x)2 = (a)y)2 =1, WrWy = —WyWy, dwy = dw, = 2. (30)
At this stage there is a first contact with gauge theories. Consider the vector space of

Hermitian 1-formg H € Q(;(A), H* = H}. A general elemenk is of the form

H = p(hy)ox + p(hy)wy (31)
with

hx (O’ 0) = hx(ls O)*s hx(lv l) = hx(09 1)*7

hy(0,00=hy(0,1)*,  hy(1,1) =hy(1, 007" (32)

These elementd are gauge potentials on the lattice. In fact, the space of gauge potentials
carries an affine representation of the group of unitaries

UA ={uec A us =u*u=1 =:G. (33)
In our example this group is Maxwell's loc&l(1). In general its action is defined by
H" = p)Hp™) + p) d(p@ ™) = o Hpu™) + p)I[?, pu™)]
= p@[H +Pp@w ™ - 9. (34)

H" is the “gauge transformed @f”. As usual every gauge potential defines a covariant
derivative d+ H, covariant under the left action gfon Qé,A:

"oi=puww, e ‘Q@A’ (35)
which means

d+ HY' o ="[(d+ H)w]. (36)
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Also we define the curvatur€ of H by

C:=dH + H? € 95@4). (37)

The curvature” is a Hermitian 2-form withhomogeneougauge transformations
C* = d(H") + (H")? = p)Cpu™). (38)
In our example, we get

C = p(dchy + dyhy + 2hy + 2y + hyRyhy + hy Ryl y)w?
+ p(=dyhy + dchy + by Rehy — hyRyh)wywy. (39)

In the last step, we construct the Yang—Mills action. To this end we need a scalar product on
the space of 2-forms. But our forms are operators on the finite dimensional Hilbert space
‘H and we have a natural scalar product.

At this point we must note that althoughis faithful 7 is not, not even after dividing
out the junk; and even worse, the image in Byl does not remember its degree. (This
complication does not occur in the continuum.) In our example for instance we meet the
8 x 8 unit matrix as O-fornp (1) and as 2-f0rmu§. By definition the scalar product of two
forms of different degree is taken to be zero, for forms of same dggree define

(w, @) :=trlw*®), o,dc Qg(A). (40)

For examplep(1), wy, oy, oxwy, a)f are orthogonal generators, all normed8. More
generally, we have

), (N =2,  (o(Hox, p(Hwy) =2(f, ),

(o (Hawy, p(Hoy) = 2(f, f), (41)
(p(Haxwy, p(Hwrwy) =2(f, ), (p(HHw?, p(Hw?) = 2(f, f) (42)
with
~ 1 - ~
D= Fanfexy). (43)
x,y=0

We are now in position to define the Yang—Mills actigg(H) = (C, C). By construction

it is a positive, gauge invariant polynomial of fourth order in the values,cindr, . Its
minimum, H = 0, breaks the gauge invariance. In order to compute the Yang—Mills action,
we introduce a new variab[é?2]

p:=H+9g (44)
with

dg = —/ ru tdu)du =2 —f o HPpw) du = w, + wy, (45)
g g
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and d: is the normalized Haar measure of the compact Lie g@u@e decide that the
Dirac operator does not transform under gauge transformations.¢gitransforms homo-
geneously

¢ = pWepu™r). (46)
Let us expand the homogeneous variable as
¢ = p(px)wx + p(‘py)wy 47)

with ¢, = h, + 1, ¢, = h, + 1. Then we can rewrite the curvature as
C = p(@xRypx + ¢y Rypy — Z)wf + p(@x Ry @y — 0y Rypr)wywy, (48)

and the Yang—Mills action can be written explicitly

Vo = 2{[1¢x (0, 0)[> + ¢y (0, 0)[* — 2]? + [1¢x (0, 0)|* + |y (1, 1)|? — 2]
+ [l (L DI + [0y (0, 0|7 — 21 + [lox (L, DI + loy (L, D2 — 2]
+ 2| (0, 00y (1, )* — (1, 1)*9y (0, 0)|% + 2|, (0, 0)y (O, 0)*
— e (L, D¥py(L, D%} (49)

The little group of its minimunH = 0 ory := @ is the group of rigidJ (1) transformations

as in the continuous case. However, unlike in the continuous case, there is a gauge invariant
point,¢ = 0 or H = —# which is also a local maximum of the Yang—Mills actigg. The
existence of this gauge invariant point indicates that in this mddglays simultaneously

the role of the gauge potential and the role of a Higgs scalar. The lattice Yang—Mills action
is its Higgs potential.

The minima of the potentialy are continuously degeneraig,(0,0) = ¢,(1,1) =
V2sinB, ¢,(0,0) = ¢,(1,1) = +/2cosp. All minima have little groups/ (1) except
when g is an integer multiple ofr/2. Then the little group i€/ (1)%. Let us remark that
this model is similar to Example 3.1 [(2]: its algebra is represented vectorially, but does
not commute with the Dirac operator and its potential has degenerate minima with different
little groups.

3. Quantum group methodsfor the same model

In the previous section, we have pulled the partial derivatives and Dirac operator ‘out of
a hat’ (motivated of course by the wish to include lattice differentials). In particular, since
the resulting? does not obey the first-order condition in Connes’s axioms in any standard
way, it is not motivated from that theory. Rather this choice of differentials comes from
requiring translation invariance under the group structur@ ef Z, x Z,. This is part of
the ‘quantum groups approach’ where one builds up the different layers of noncommutative
geometry based on the group or quantum group structure. This approach also has a more
algebraic way of working in which we deal algebraically with the differential forms rather
than concretely as matrices. In this section, we explain the construction of the Dirac operator
from the quantum groups point of view and significantly extend the results of the previous
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section using this algebraic language. In particular, it allows us to compute the full exterior
algebra and its cohomology as well as the full moduli of flat connections in the gauge
theory picture that underlies the model. Note that our results here should not be confused
with the question of existence or not of a spectral triple for a given differential calculus on
a finite group, e.g. as if13] and elsewhere (we are interested in a particular lattice Dirac
operato?).

We will use more algebraic notation. Thus, we work with the universal exterior algebra
Luniv(A) explicitly as an algebra with a finite number of left-invariant 1-forms as generators.
We then exhibit.Qa(A) not as matrices but as a quotieRt.4) of the universal one by
relations among the generators (keeping the same names for the generators in the quotient).
For ease of reference, the resulting dictionary with the concrete matrices in the previous
section will be

wy = 1(ey), wy = m(ey), H =n(x), C =n(F), ¢ =1m(P)
(50)

for abstract formsy, ey, «, @ and F in £2(A).
3.1. Exterior algebra and cohomology

A differential calculus from the quantum groups point of view means4ayl bimodule
R1(A)andamapd A — 21(A) obeying the Leibniz rule. Whed is a Hopf algebra we
demand further tha®(A) is bicovarianf4]. Just as a topological space can admit more
than one differential structure, one has to classify the possiBled). From results irj4]
it is immediate for the case of = C[G], the functions on a finite group, that the possible
bicovariant calculi are in correspondence with subsets

CcG, egC, (51)

wheree is the group identity. The elements 6flabel the ‘basic 1-formsie,} of the
corresponding?é(A) and any other 1-form is a unique linear combination of these with
coefficients fromA. The commutation rules and general form of d in this construction are

eaf = Ra(f)ea, df = Z(aaf)ea’ 0 = R, —id. (52)
aeC

One of the nice features of this construction is that it does not require the group to be
Abelian, i.e. extends to non-Abelian or ‘curved’ lattices.

Also, these calculi are all quotients of the univel@é“v(A) which can either be defined
‘symbolically’ as in the previous section or very explicitly as the elemeni4 &f.4 whose
product is zero. Herefl=1® f — f ® 1. For functions on a finite s&t, we take for4
a basis oB-functions and hence

28 (A) = {8, @ 8 = 8, dSu|g £ h, g, h € G}. (53)

The quotient to our choseﬁcl(A) means to set to zero all such elements except for those
for which (g, h) € E, some subset of allowed directions. In the group case this si@ibset
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is defined in a translation-invariant manner frémnamely as pairgg, i) for which the
difference (in the additive case) livesd@n
In our case we choose the subset

C={xy}, x=@10, y=(@OD, (54)
so every 1-form is uniquely of the form
a =ayey +ayey, ay,ay €A (55)

The basic 1-forms can be written explicitly as

ex= ) SO0y, ey= Y 8,ds,. (56)
geszZZ geszZz

This is a full description oné(A) as defined by the choice Gfabove. Clearly, we have
the same answer as$ection 2vhere we postulated an operafoaind derived?(; (A), i.e.

T A = :z;(A). (57)

Actually this is a well-known general feature; for any linearly independgfij and? =
d,y%, we will have the same agreement between the Connes and the quantum groups
approach up to degree 1, by construction. We will work with m@(/l) and no longer
write theC explicitly.

Next we consider higher degree forms. For any first-order calc@itisd) there is a
‘linear prolongation’ where we impose only the relations in higher forms inherited from
those at degree 1 and & 0. The latter in our case means

0=d(d:(f)ex + 8)'(f)ey) = _Zax(f)ef - 28}'(f)ey + axay(f)(exey +eyex)
+ 0x(f) dey + av(f) de.,

and choosingf = 8o + o1 — 10 — 811 which obeysd, f = —2f andd, f = 0, and a
similar function for the roles af, y interchanged, one finds

de, = 265, de, = 26}2,, exe, = —eyey. (58)

The last of these follows from putting the first two into thé & 0 equation and then
choosing a function witld, 9, f # 0. Beyond this linear prolongation exterior algebra, we
are free in the constructive approach to impose further relations in higher degrees. One
general construction exists due to Woronowi¢and for an Abelian group as in our case

it would simply imply thate? = ¢2 = 0. We do not do this but instead impose the relation
coming out of the Connes machinerySection 2 namely

2= (59)

in the exterior algebra. Here the Connes approach and the Woronowicz approach for higher
differentials diverge and we choose the former. T2 A) is two-dimensional ove,
being spanned by,e,, e%. Choosing representatives in the universal exterior algebra for
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these, our explicit calculatior{80) in the previous section show that their images under
are linearly independent, hence

7 R%A) = szg(A) (60)

when constructed in this way.

Next we take the ‘quadratic prolongation’ of thiz!, 22 to degree 3 and higher, i.e.
impose no further relations than the quadratic ofi3 and (59)already imposed and
whatever is implied by these.

Proposition 3.1. The quadratic exterior algebr& (A) generated by, e, with relations

e? = e2 and{e,, e,} = Ois isomorphic ta2,(A). Moreover, there is a generatirigform

0 =ex +ey, do = {0, o]

for all forms «, where we use commutator on even degree and anticommutator on odd
degree andr (9) = #g as a matrix

Proof. First we compute what this quadratic exterior algebra looks like. We then compare
it with Connes construction and check the isomorphism. The remark &bisuthen an
immediate corollary since it is a general feature of the linear prolongatig oft) (where

we have seen that, e, anticommute) and hence holds in the quadratic exterior algebra
quotient (as well as in the Woronowicz exterior algebra where it is would be well known).
To compute the quadratic exterior algebra we note that

dexey +eyey) = 2e§ey — eXZei + Zeiex - eyZef =0, d(ef — e§) =0

automatically, hence there are no implied relations in degree 3 or higher coming from these.
In that case, we have only the relatiqs9) and the anticommutativity relations. From this
it is easy to see that

QP(A) = Alexel ™t el), p=1 (61)
is two-dimensional overl = C[Z> x Zy]. By comparison we recall Connes definition

(20, (A)
.Q'D(A) — Tp univ
? I»

wherer, denotesr in degreep of the universal calculus. The quadratic exterior algebra

is at least as big as the Connes one since it uses only the relations already holding in the
latter in degrees 1 and 2. Hence all that we really need to establish an isomorphism is to
show thaifzq;’ has dimension 2 ove[Z, x Z3]. In fact, it suffices to exhibit two elements

of the universal exterior algebra with linearly independent imagespi(mfmv(A)) for

eachp, after which the result can be proven by induction. Indeed, knowing our result for
52;_1(,4) ~ =1 A4), we know that the kernel of,_1 is generated by the quadratic
relations above. But d of these, by the computation above, lies again in the ideal generated
by these relations, s@, = 0 and henceQé’ (A) = mp (20 (A).

. Jp =mp(dkerm,_y),

univ
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There are many ways to come up with the required two elements of the universal exterior
algebra in each degrge The natural construction is a method that works very generally
for any finite group (see below). Alternatively we can use the representatives implicit in the
ad hoc computations iBection 2 Thus we lifte,, e, to the universal exterior algebra as
elements

¢ = (1—2X)dX, ¢y =(1-2r)dy,
whereX, Y are some functions as Bection 2 Here
9 X =1—2X, (1-2x)2=1, (dX)(1—2X) = —(1 - 2X) dX,
[2,X] = (1-2X)R, ® y*,
and similarly forY. We also need = 810+ 801 = X + Y — 2XYwhich obeys
(dX)(1—2Y)=dZ — (1 - 2X)dY, [2,Z] = (1-2Z)(Ry ® y* + R, @ 7).
From these facts it is not hard to compute
55 =(1- 2Y)[p] (dY)P(—l)p(”_l)/z, ﬂp(ég) = (R, ® y,v)[p]’
where [p] = pmod 2, and
&bt = 1 —2x)(dX)(1 — 2v)P~U(dy)r— (-1 P~ D272,
Tp@Eel ™) = (R ® y") (R, ® y")P~1l,
These are linearly independent for eachs required. a

A more explicit way to obtain this result, which makes clearer the quotienting from
the universal calculus (and works similarly for any finite gradj is to note that the
universal calculus on a Hopf algebra is automatically bicovariant and hence in the group
case corresponds to some subset, naifigly = G — {e}. In our particular case it means
a basic 1-form

Cx+y = Z 8¢ d5g+x+y (62)
8

in addition toey, e, defined in the same way {$6), but now in$2yniy(A). The universal
exterior algebra is the free algebra generated ey theser, forall ¢ € G —{e}. Nowon

any bicovariant calculus (using Hopf algebra methods) one has a Maurer—Cartan equation,
which, for the universal calculus in our case, comes out as

de, = 26)% + {ex, ey} + {ex, exyy} — {ey, exyy ) (63)
dex+)7 = 26)%4,}, + {ex, ex—‘,—y} + {eyy ex+y} - {exv ey}v (64)

and a similar equation foreg. Similarly for any finite group.
With this description of2yniv(A) the linear prolongation exterior algebra mentioned
above is just given by setting to zero all thg except those in our conjugacy class. In
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our case, we project out, = 0 and this yields the Maurer—Cartan equation for our
calculus and the additional anticommutation relation,(b8) as the linear prolongation.
Likewise the quadratic exterior algebra adds the additional relafiea e§. Note also that
thee, = ey +e,4y ande, = e, + e,y Used above project onto the same 1-forms under
the quotient as our generatars ey, but are not so natural from the point of view of the
group structure.

For the products of 1-forms in the universal calculus we note dhéds, )8, =
8¢ d(84+x84), €tC. Hence it is immediate that

ef = 8, A1, dsy dsg i, dsy -,
8

-1
exef = Z (Sg d8g+x d8g+x+y d8g+x d8g+x+y R (65)
8

(alternating until the total degree 9. We also need
2, 8] = (Bg+x —8g)Re @ y* + (Jg4y — S)Ry ® 7. (66)

When computingr of products of thez,, e, the §, to the front forces which of the four
s-functions in each?, §.] can contribute. Let, b, ¢, etc. be chosen fronx, y}. Then
similar to the above, we have

€qpé, - = Zag d3g+a d3g+a+b d5g+a+b+c cee,
8

w(eqepec )= Z ‘Sg (Ra®y9) d8g+a+h 5g+a+b+c T
8

=R, ®y") Z 8g+a Wgratp dgtatpic -
3

= (R, ® y“)m(epec--+)
after a change of variables. Hence, we find for this description of the universal calculus that
n(eaebec"'):RaRbRc"'®VabeC"' . (67)

In fact, we see explicitly that (e;) = R, ® y*, m(ey) = R, ® y¥ andn(e,y,) =01is

an algebra homomorphism when extendeddsie,) = o(f)m(ex), etc. Again, this is a
general construction for any finite group, conjugacy class and choice of linearly independent
‘gamma-matrices’. The map

Quniv(A) — 2,(A Ra@y? foraec. (68)
: Quni - ; a) =
T Quniv(A) > 2y(A). e =1 fora ¢ C U {e},

is an algebra homomorphism with= )" 9, ® y“. Its kernel depends on the relations
among the gamma-matrices; their only homogeneous relations being quadratic in our case
(andG being Abelian) is the reason that, (A) is quadratic.
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This completes our algebraic descripti@i.A) of the exterior algebra,(A) obtained

by Connes construction for our choice?afThe various nonzero dimensions of the exterior
algebra ofC[Zy x Zj] are 1:2:2:2, etc. and there is no top form. This means that one should
not expect a Hodge operator or Poincaré duality for this calculus.

Proposition 3.2. The quantum de Rham cohomology of this differential calculus on
Zo x 7Ly is

H°=C-1,  H'=C-(ex—e¢), H’=1{0, p=>2

Proof. If fisafunctionand ¢ = 0it meansRk,(f) = f andR,(f) = f and hencef is
a multiple of the constant identity function. Hen&® is spanned by 1. If a 1-forr{55)is
closed it means (using the Leibniz rule and d as above) that

0 =da = (dr0ry — 0yory)exey + (Oxox + Oyary + 200, + Zay)eg.

We write a 2-formuyye e, + ayye? as a vector

axy
ayy '

anda as a vector

()

Then the operatoridwvhich is d on 1-forms is an & 8 matrix
id—R, R,—Iid
dp={. . ,
id+ R, id+ Ry
and its kernel is easily found to be four-dimensional. The exact form&inform a
three-dimensional subspace of this kernel (sinc&?¢A4) — £21(A) has one-dimensional
kernel given by constants). Hengg" is one-dimensional and easily seen to be represented

by e, —ey. Also note that the image ofids therefore four-dimensional also. For the general
d, : 27 — 271, we note that

7 2¢0™ for podd

ey, —

' 0 for peven

as one may easily prove by the graded Leibniz rule and induction. Then

d(fece? '+ g&) = (0 f + dyg + 2/)el ™ + g de?
+ (0xg — ayf)exef — fe, def_1
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corresponds to the matrix

g (—id)P~1 — R, R, —id
PO\ d4re (idrtr, )

which has an order 2 periodicity. In particular,

o (~Gd+R)  R.—id
7\ id+R,  —G(d-Ry) )"

The transpose of this matrix is easily seen to be conjugate under

(5 o)

to —d;. Hence the kernel ofghas the same dimension as the kernehohamely 4. Hence
H? = {0}. Also the image of glis therefore four-dimensional as is the kernel gf(by
periodicity) hence® = {0}. The rest vanish by periodicity. O

Let us note as an aside that in the simpler Woronowicz calculus where we woefd=set
¢2 = 0, the cohomology by a similar computation is more easily found t&/Be= C - 1,
H!=C e, ®C-eyandH? = C - eye, which has dimensions 1:2:1. This is because in
this case the kernel of d on 1-forms is five-dimensional. The exterior algebra in this case
also has the symmetric form with dimensions 1:2:1 dUg¥, x Zy] but this calculus is
not the one coming out of our Dirac operator using Connes prescription.

3.2. Gauge theory

Returning to our above differential calculus, we can also impessteucture witre,, ¢,
Hermitian as fow,, w, in Section 2 Note that then

(df)* = ex(axf)* + ey(ayf)* = exax(f*) + eyay(f*) = _df* (69)

using the definition o and the commutation relatioi§s2). (This is not a property of the
Hilbert space representation.) Thus the real cohomologilis= R, etc.

Given a differential calculus one is also free to do ‘gauge theory’ with connections
a € 21(A). This is obviously some kind df (1) gauge theory. It is worth noting that from
a fully noncommutative geometrical point of vigd4], it would be better called ‘U(0)’,
with C the enveloping algebra of the zero Lie algebra (or the coordinate ring of a point).
We assume that is Hermitian, which means

Ry (e}) = ay, Ry(ot;f) =a, (70)
in terms of its components. Gauge transformation ig layU (A) as

o = uout +udut. (71)
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In our case a unitary essentially means a function @ x Z, with values in the unit
circle,u = €% with ¢ real, hence the above is explicitly

oy > UR (u Moy +udut = efia”sax +eid 1 (72)

and similarly forx,, . The gauge-covariant curvatufge) = do +a? by asimilar calculation
to the above is

F(o) = 20y + 200y + 00t + dyory + xRy (ory) + ayRy(oey))e)%
+ (Oyory — Oyax + ax Ry(ary) — oy Ry(ay))exey.

This is just the same result as 8ection 2except that it is obtained now by working in
£2(A) and its algebraic relations as above, not by explicit matrix calculations. Here the two
coefficients areFyx and Fyy say, and transform by conjugation Bf which means

Fyx = Fxx, Fyy e_iaw)'d)ny, (73)

whered, .y, = RyR, —id.

Proposition 3.3. The moduli space of zero curvature gauge fields modulo gauge equiva-
lence is a real circle

WRhpl=2
moduloi — —2 or u — —pu. The corresponding gauge fields are

a = (A —Dex + (u— Dey.
Proof. It is easy to see that these are solutions of the zero curvature equation, which we

leave to the reader. We have to show that any solution is gauge equivalent to one of these.
First, we change variables to

D=a+0, < Di=a,+1 (74)
in which case the curvature and gauge transformation figve the form

Fix= Oy Ry @y + O Ry ®y —2,  Fyy= O, R, &y — O, R, Dy,

@, > UR u Ho,, (75)
and similarly for®,. The F = 0 equation clearly becomes

DR Py + DyRy®y =2, D R Py = D R, D,. (76)
The first of these implies that

R (Px Ry Py) = (RyPy) Py,

Ry(P R ®Dy) = Ry(2— @R, ®y) =2 — O R, Dy = O, R, Dy,
hence

DR, D, = A2, DR,y =p?, A4 pul=2 (77)
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for some real constanis w.. Here the reality property af translates ag = R, &, etc.

and henceb, R, @, = |®,|2 > 0, etc. For the moment, we assume that. # 0 and
consider the degenerate cases later. Next we write out the content of the other equation of
(76) at the four points 0%, x Z,

®,(0,0)P,(1,0) = #,(0,0)0,(0,1),  P,(1,00®,(0,0) = &, (1, 0P, (L, 1),
(78)

¢X (07 1)¢y(11 1) = ¢>y(07 1)¢x (03 O)v ®X(1s 1)¢y (07 l) = ¢y(17 1)¢x (13 O)
(79)
In view of (77), most of these equations are redundant and we just have

®,(0,0)  ,(0,0)
@,(0,1)  &y(1,0)

Let
_ _ H
M(O, 0) - 17 M(O’ 1) - @y (0’ O) )
_ _ oL Dy
u(]" 0) - ¢x(0’ O) ’ M(l, 1) - (Dy(O, O))\, ’

which is unitary (each component has modulus 1) in view7a%. Then using the above
explicit equations an@77), one may verify that

&, =uRuh, @&, =uRulu
as required. In the special case where 0 we haved, = 0 due to(77). We take

wO. ) =uL D=1  u0.0 =209 210
n

u(l,0) =
and verify that®, = uRyu_lu as required and that is unitary. Similarly foru = 0.

In these constructions we are free to choasg > 0, for example, but are also free to
choose them in other quadrants of the circle, which means that the different quadrants
are all gauge equivalent to the positive one. Finally, we consider two gauge fields in our
moduli space for positive, u and2’, . If related by a gauge transformation, we would
need(u (0, 0)/u(0, 1)) = u' = (u(0, 1)/u(0, 0))u by looking at®, (0, 0) and®, (0, 1).

These imply thap? = 2 and hencex = . Similarly for » = A’ and the degenerate
cases. Hence there is precisely one zero curvature gauge field up to equivalence for each
parameter pair in the positive quadrant. That s, the moduli space is exactly the circle modulo
the reflections. — —A, u — —u (or exactly the quarter circle with positive values)

We see that there is an entire circle of zero curvature gauge fields with the four quadrants
gauge equivalent to each other. This is the ‘geometry’ of the discrete part of our model. In
particular, the two opposite diameters= 0, anda = —20 (or @ = +0) are in fact gauge
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equivalent. Note also that for the Woronowicz choice wﬁh: e% = 0 the above proof
would work in just the same way sin¢e8) and (79glone imply that®, |? = A2, |®,|? =
w2 asin(77)but without the constraint that the parameters lie on a circle. In this case the mod-
uli space of zero curvature gauge fields up to equivalence would be the entire plane modulo
the two reflections (a 1/4 plane), i.e. does not have such a nontrivial topology as our case.
Finally, coming from the Connes’ construction, we have an inner product particularly on
forms. This plays the role of Hodgeand integration against the top form rolled into one
(even though the former does not appear separately). AccordBgdiion 2t is

(f, 2) = (fer, ge&r) = (fey, ggy) = (feve,, gere,) = (f€2, g€) = 2(f, 2)2 (80)

in terms of the usudP inner product on functiong, g (and zero for other combinations of
our basic forms). As explained Bection Zhis defines the gauge field action

5(F. F) = || Fudl® + || Fyl®
= 1P+ + |y |7 = 2| + | R (P} Dy) — Ry(D: D)) (81)

in terms of the usudP norm. Clearly, the abov& = 0 solutions form a circle of minima

for this action whose origin is the poiat= —6 or @ = 0. The points on this circle are not
gauge invariant, being equivalent to their reflections in other quadrants as well as defining a
whole manifold of their further gauge transforms. Accordin§éztion Zhe center point of

the circle is also an extremum, a local maximum and gauge invariant. In this way, the gauge
field action resembles the ‘Mexican hat’ potential for a Higgs field if we \deas an adjoint

Higgs field of some kind rather than as a connection as in our discrete geometry above.

4. Particle physics Lagrangians

In this section, the discrete gauge connections or Higflsare promoted to genuine
fields, i.e. space—time dependent vectors. As already in classical quantum mechanics, this
promotion is achieved by tensorizing with functions. Let us denoté-lthe algebra of
(smooth, complex valued) functions over four-dimensional space-#m€onsider the
algebrad; := F ® A. The group of unitaries of the tensor algebtais the gauged version
of the group of unitaried/ (A) =: G of the internal algebral, i.e. the group of functions
from space—time into the group. Consider the representatign := - ® p of the tensor
algebra onthe tensor proddgt := S®#H, whereS is the Hilbert space of square integrable
spinors on which functions act by multiplicatiofy-v)(x) := f(x)¥ (x), f € F, ¢ € S.

The space—time points are labele@nd there should not be confusions with the discrete
labelx € Z,. We denote the Dirac operator on the continuous space-Atirhg?,, and its
chirality operator byy®. The definition of the tensor product of Dirac operators,

9, =0y ®lg+y°®? (82)

comes from noncommutative geometry. We now repeat the above construction for the
infinite dimensional algebral, with representatiom, and Dirac operato?,. As already
stated, for4d = C, H = C, ? = 0, the differential algebr@@ (A;) is isomorphic to the
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de Rham algebra of differential fornsa(M, C). For A = C2, # = C2, we obtain the two
sheeted universe, one of the first examgj#dgo exhibit spontaneous symmetry breaking.
For generald, using the notations of Schiicker and Zylingl®], a Hermitian 1-form

H; € !25 (A, H = H,
t

contains two pieces, a Hermitian Higfisld H € £2%M, .Q;(A)) and a genuine gauge
field A € 2Y(M, ip(g)) with values in i times the Lie algebra of the group of unitaries

g={XecAX"+X=0} (83)
represented ofi. The curvature oH;
C =0 H +H? e 95 (A) (84)

contains three pieces
C; =C + F — Dypy®, (85)
the ordinary, now space—time dependent curvatute dH + H?, the field strength
F:=dyA+ 3[A, Al € 24(M, p(g)), (86)

and the covariant derivative of homogeneous scalar variable H + 7,
Dy = dug +[Ap — pA] € 21 (M, 2;(A)). (87)

Note that the covariant derivative may be applieg titvanks to its homogeneous transfor-
mation law,Eq. (46)
The definition of the Higgs potential in the infinite dimensional spdce

Vi(Hy) == (G, Cy) (88)

requires a suitable regularization of the sum of eigenvalues over the space of shinors
Here we have to suppose space-time to be compact and Euclidean. Then, the regularization
is achieved by the Dixmier trag¢&] which allows an explicit computation &f. One of the

key features in the Connes—Lott scheme is thadlone reproduces the complete bosonic
action of a Yang—Mills—Higgs model. Indeed, it consists of three pieces, the Yang—Mills
action, the covariant Klein—-Gordon action and an integrated Higgs potential

V(A + H) =f tr(F* % F) +/ tr(Dg* % D) +f «V (H). (89)
M M M

The natural appearance of both the kinetic term for the Higgs and its potential is the key
feature of the approach. Recall that in particle phenomenology these two pieces are added
to the Yang—Mills action opportunistically in order to reconcile a model with experiment.
Here these two pieces are derived from geometry.

As the preliminary Higgs potentidlp, the (final) Higgs potentiaV is calculated from
the finite dimensional tripleA, #, ?),

V =V — trlaC*aC] = tr[(C — «C)*(C — aC)], (90)
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where the linear map

a: szg(A) — p(A) + 7 (dkermy) (91)
is determined by the two equations

tr[R*(C —aC)] =0 forallR € p(A), (92)

tr[K*aC] =0 forallK € w(dkermy). (93)

All remaining traces are over the finite dimensional Hilbert sijdctV/e denote the Hodge
star byx-. It should not be confused with the involutiéh Note the ‘wrong’ relative sign
of the third term inEq. (89) The sign is in fact correct for an Euclidean space—time.

A similar feature holds in the fermionic sector, where the completely covariant action
v*(@, + H,)y reproduces the complete fermionic action of a Yang—Mills—Higgs model.
We denote by

Y=Yr+YLeH, =5 (Hr ®HL),
Y= 3= ydy, yri= A+, (99)

the multiplets of chiral spinors and hy* the dual ofyr with respect to the scalar product
of the concerned Hilbert space. We set

9 M ® 01 +M® 00 (95)
9= 00 10/
M will turn out to be the fermionic mass matrix. Similarly, we set
H=i*® 01 +h® 00 2 (96)
= S 9
00 10 4
Hidg= ol Nioe(d ° 21 (A 97)
= = S .
% g ® 0 0 % 10 P
Then

V@ + H)y = /M @y +y (A)Y + /M «(Urhy>yr + YRy yr)
+ [ My SR M)
= /M $ U@y + v (A)Y + fM *(U @y YR + VRG Y UL)  (98)
containing the ordinary Dirac action and the Yukawa couplings. Note the unusual appearance
of y° in the fermionic actior{98). Just as the wrong signs in the bosonic ac(®@®), these

y® are proper to the Euclidean signature and disappear in the Minkowski signature. For
details, see the first reference[df Example 2] and[15, Section 6.9]
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In our lattice model the junk (d kerm1) is zero and solvingqs. (92) and (93 easy
C —aC = p(px Rypy — 9y Rypy) oy wy, (99)

implying that upon tensorizing with continuous space—time the Higgs potential,

V =2{|. (0, 009y (1, )* — ¢ (L, 1)*9, (0, 0)|?
+ 192 (0, 0)9, (0, 0)* — gy (L, D)*y (1, 1|}, (100)

loses its precious property of spontaneous symmetry breaking. We only know of very
few examples where the spontaneous symmetry breaking is lost after tensorizing, the first
example being the Connes-Lott model of electro-weak forces with one generation of leptons
[1]. Details can be found ifL5, Section 4.6]

5. Discrete diffeomorphisms and spectral action

Let us summarize Connes’ strategy up to this point. He reformulates Riemannian ge-
ometry algebraically in terms of spectral tripled, #, #). This reformulation is general
enough to never use the commutativity of the algetaf functions. It is special enough to
include generalizations of differential forms, exterior multiplication and derivative and the
combination of Hodge star and integration needed to define a Yang—Mills action. On a finite
dimensional spectral triple, such a Yang—Mills action looks generically like a Higgs poten-
tial and breaks the group of unitariesdnspontaneously. Tensorizing the finite dimensional
spectral triple with the infinite dimensional, commutative spectral triple of a Riemannian
manifold, ‘almost commutative geometry’, produces a complete Yang—Mills—Higgs model.
Inthis setting of almost commutative geometry, the Higgs scalar is reduced to a pseudo-force
of the Yang—Mills force. This situation is perfectly analogous to Minkowskian geometry
(special relativity) reducing the magnetic force to a pseudo-force of the electric force: take
an electric charge atredt,= 0, and change coordinates to a frame moving with constant ve-
locity. After this Lorentz boost, a magnetic fieghappears. Every pseudo-force is attached to
a coordinate transformation, another example being centrifugal and Coriolis forces attached
to the transformation to the rotating frame. The Higgs scalar is attached to a gauge trans-
formation which in noncommutative geometry is a generalized coordinate transformation.

With his fluctuating metric, Connes goes one step furfBgrHis algebraic reformula-
tion of Riemannian geometry of course contains a generalization of the Riemannian metric,
the Dirac operato?. This generalization is special enough to allow for an algebraic refor-
mulation of general relativity in terms of the commutative spectral triple of a Riemannian
manifold. The kinematical part of this algebraic reconstruction is the fluctuating metric, the
dynamical part is the spectral actif8]. Repeating this algebraic construction for almost
commutative spectral triples produces in addition to general relativity some very special
Yang—Mills—Higgs models. In this almost commutative setting, therefore, these very spe-
cial Yang—Mills—Higgs forces are reduced to pseudo-forces of gravity. The electromagnetic,
weak and strong forces are among these very special Yang—Mills—Higgs forces.

The central tool to construct the fluctuating metric is the lift of the group of automor-
phisms and unitaries of to the Hilbert spac@{. For the commutative triple of a Riemannian
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manifold, the automorphisms are the diffeomorphisms of the manifuddgeneral coordi-
nate transformationsand their image under the lift are the local spin transformations. The
unitaries are gaugetd (1) transformations. In the presence of the real structure, they are
all lifted to the identity. Let us compute the lift in our lattice example. The automorphism
group of our algebrad = C[Z> x Z3] is

Aut(A) = Sa > P, (101)

the group of permutations of the four points. It is the discrete version of the diffeomorphism
group. We disregard complex conjugation, that is we do not considir be real. The
group of unitaries

UA) =UD* 5 ulx, y) (102)

is the discrete version of Maxwell’s gauge group. Simultaneously, it plays the role of the
gauged Lorentz group. We need to map both groups to the group of automorphisms lifted
to the Hilbert spacé{,

Auty(A) :={U : H — H,UU* = U*U = 1,[U, y3] =0,
Ve AUp(HU L =p(f);3f € A). (103)

As mentioned our example does not satisfy Connes’ first-order condition. Anyway, we
would have a hard time to choose the sign of the square of the real structure since this
square ist+1 in dimension zero;-1 in dimension two. Therefore, we do not introduce a
real structure in the definition of the lifted automorphisms. Every lifted automorpbism
projects down to an automorphisth= p(U) with P(f) = f. In our example, we have

Auty (A) = Sa x (U] x UDR) 3 (P,up(x, ), ur(x, y)). (104)

Let us denote the lifting homomorphism K%, ¢) : Aut(A) x U(A) — Auty(A). It
must satisfy(p o (L, £))(P,u) = P. Let us start with the automorphisms alotgpP) =
(B(P),ur(P),ur(P)). The most general solution §(P) = P, up(P) = or(P)la,
ur(P) = or(P)14, where the two functionsy, z : S4 — Z are either identically one
or the signature of the permutation, four possibilities. We have writterydo ihdicate
that the unitaries are rigid, i.e. independentafndy. As unitary 8x 8 matrices the four
possible lifts take the form

L(P) = P ®[3(01 + or)l2+ 3(0L — or)y7)]. (105)
They only induce trivial fluctuations of the metric
L(PYPL(P) 1=+, @y +3,®yY), 8 =PoP L (106)

This is in sharp contrast to the continuous case where the lifted diffeomorphisms induce
the general curved metric starting from the flat one. Fortunately, upon tensorizing with a
continuous space—-time we obtain a general internal Dirac operator that acquires the status
of the fermionic mass matrix. In the almost commutative setting, we will also see the lift of
the unitaries of our internal algebrd= C[Z> x Z>].

The automorphisms off, = F ® A close to the identity are diffeomorphisms of
space—timep € Diff (M). The group of unitaried/ (A4,) is the gauged’ U (1)* whose
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elements are functions froM to U (1)* that we denoted by = («(0, 0), u(1, 0), u(0, 1),
u(1, 1)) as before. The group of automorphisms lifted to the Hilbert space has as component
connected to the identity

Auty, (A) = Diff (M) x M (Spin4) x U} x UM$) > $.up.up).  (107)

The lift L(¢) is described explicitly if16] and locally it induces the general curved Dirac
operator onM by fluctuating the flat one

. 3 1 ,
L(@)Pail(¢) ™t = ie My [ P Zwbcﬂy”y‘] =0u (108)

with tetrad coefficientg;; and their torsionless spin connection 1-fogfg,, dx*. Let us
concentrate on lifting the unitarie&(u) = p; (1), i.e.u; = ug meets all requirementsgis
a group homomorphism, and for every unitary U (A;), £(u) is a unitary operator o,

£(u) commutes with/>® y3 andp o £(u) = 14,. We are ready to fluctuate the metric again

)P L)t =19, et

0 1
=ie, Hy? |:ax—ﬂ®18+zwbcm’ ye ®18—14®|P(Au)]
+y°Q[H + 7]

. d 1 .
=ie, 1";/“ [E)x_ﬂ ® 1g+ Zwbcﬂybyc Rls— 14 ® I,o(Aﬂ)} +7°®0¢
(109)

with the Yang-Mills connection 1-form#i, dx* = u du~1. As in the Connes—Lott scheme,

the Higgs scalar appears as a connection 1-form with respect to the internal spectral triple,
H=nwdu1)/i = ¢—7. As before we expand =: p(¢x)wy + p(py)wy with four, now
space—time dependent complex coefficiepig0, 0) = ¢, (1, 0)*, ¢x (1, 1) = ¢x(0, 1)*,
¢y(0,0) = ¢, (0, D*, ¢, (1, 1) = ¢, (1, 0)*. The kinematics is defined by a metric encoded

in @, or its tetrad coefficients, by a Yang—Mills potential, i.e. a 1-fotrwith values in i

times the Lie algebra dff (A) and by four complex Higgs scalars.

In general relativity, the dynamics of the metric is essentially fixed by a diffeomorphism
invariant action functional. In the setting of spectral triples, there is a natural automorphism
invariantaction functional, the trace of the fluctuated Dirac operator, i.e. of the Dirac operator
thatis minimally coupled to the metric, to the Yang—Mills potential and to the Higgs scalars.
Since the Dirac operator is self-adjoint and anticommutes with the chinalitg y3, its
spectrum is even and it is enough to compute the trace of its square. Being divergent, this
trace is regularized by a functiofi : Ry — Ry of sufficiently fast decrease and the
celebrated spectral action of Chamseddine and Co@hesads

¢2
S[g. A, ] =tr f <$) . (110)

For convenience, we have put in a scale factararrying the dimension of the eigenvalues
of the Dirac operator, say GeV. Asymptotically for largethe spectral action reproduces
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the Einstein—Hilbert action and a complete Yang—Mills—Higgs action. In this limit the reg-
ularizing functionf is universal in the sense that the spectral action only depends on its
first three ‘moments’fo := [~ tf(r) dr, f2 := [y~ f(t)dr and f4 = f(0). In particular,

its Higgs potential is

2 2

" TM f2> 2

V = Atrg(p*pe*e) — — trg(¢p*p), *r=—, — = (==) A% 111
8(¢ pp*p) > 8(¢* ) W 2 <f4 (111)

A straightforward calculation gives

V =2A{[|¢x (0, 0)|* + |¢,(0, 0)|%* + [0+ (0, 0)[* + [y (1, 1)|?]* + [Igox (1, )|
+ 10y (0, 0)P1% + [lex (1, DI* + @y (L, DI?]? + 2/9. (0, 0)y (1, 1)*
— 0:(L, 1)*0y(0, 0)|? + 2|9+ (0, 0y (0, 0)* — 0 (1, D*y (1, 1)}
— 1295 (0,09 (0, 0) + ¢ (L, ¥ (L, 1)
+9,(0,0*9y(0,0) + @y (1, D*py (1, D}. (112)
As its brother fronSection 2 Eq. (49) this potential has continuously degenerate minima,
0x(0,0) = (1, 1) = 1/ (2v/2) sinB, 9, (0, 0) = ¢, (1, 1) = 11/(24/%) cosp. All minima

break the gaugef U (1)* spontaneously down to a single, rigit{1), except whers is an
integer multiple ofr /2. Then the little group %/ (1)2.

6. Concluding remarks
We conclude the paper with a brief outline, using again our quantum group methods, of
what happens for other lattices
G = Zp)". (113)

Clearly, one might turn to these for better approximationg-dfmensional tori.
We takeA = C[(Z,,)"] of course and the usual-dimensionaly-matricesy’, i =
1, ..., n. The calculus has the allowed directions which are the standard basis \@&etors

(X;li = 1,...,n} of the lattice, where;; = (0,...,0,1,0,...,0) denotes the element
of (Z,)" with 1 in theith place. Thusf21(A) is spanned bye;|i = 1,...,n}, where
e; = ey is a shorthand. Likewis@; = Re;i — id is the lattice differential in théth

direction in(Z,,)". This description is necessarily isomorphic to the 1-forms in Connes
construction fod = 3", §; ® y".

For the higher forms, we first compute the linear prolongatiof2f.A). Whatever the
Connes$2,(A) is, it must be a quotient of this. Using the methodSefction 3.1we start
with the universal exterior algebra with generatss|g € (Z,)".g # 0}. The linear
prolongation consists of setting to zero all except h¢. However, the Maurer—Cartan
equations in the universal exterior algebra are

deg = {Ouniv. €3} — Z ezez,  Ouniv = ZeE' (114)
b+¢=8,b,¢£0 §#0
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This is a special case of the Maurer—Cartan equations for any Hopf algebra and in any case
easily verified from the standard form of thgin terms ofs-functions onG. Projecting out
all but thefe; } gives

de; =1{0,¢;}, 0= Zel, (115)
Y eiej Vge(Zw)", §#0. (116)
Xi+¥j=g

In all these equations, addition of vectors is madf m > 2 Eq. (116)has two nonempty
cases. Wheg = 2x; for somei, we have the equation

2 =0, (117)
and wherg = x; + x; for somei # j, we have
{ei,ej} = 0. (118)

Hence in this case the linear prolongation already coincides with the Woronowicz exterior
algebra, which in turn is the ‘trivial’ one similar to that Bf*. The Connes exterior alge-

bra cannot have stronger relations than this and hence this |§23st>) in this case. In
parnculare = 0 eliminates all of the interesting features of our model such as the Higgs
potential and spontaneous symmetry breaking. The model in effect resembles more like flat
space.

On the other handy = 2 is precisely the case wher&;2= 0 and is therefore not one
of the possibilities forg in (116) Thus in this case the linear prolongation has only the
relation{e;, e;} = 0fori # j,in particularei2 # 0 as for ourZ, x Z case. We also have
? Hermitian and the same properties for thes in then = 2 case. In particular, we have
the same features of the Higgs potential, etc. Finally, sif# = id as before, we have
n(eiz) = (R; ® y")? = 1 and similar features for the higher forms. In summaryZux Z»
model is typical of the gener&l.;)" forn > 2.

Finally, we remark that the methods in this paper do apply to other finite groups just as
well. For example, they could also be applied to a non-Abelian group or ‘curved lattice’
as in[3,6]. The first of these papers also proposes a general choicarwtrices (namely
built from an irreducible representation of the finite group) and explicitly proposes a Dirac
operator for the permutation grop in this way. Development of that model along similar
lines to that here could be an interesting topic for further work.

We also notd17] which was archived shortly before ours, in which a general class of
Dirac operators on Abelian groups is proposed, although without any of the special features
of our specificZ, x Z, model.
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