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Abstract

We apply quantum group methods for noncommutative geometry to theZ2×Z2 lattice to obtain
a natural Dirac operator on this discrete space. This then leads to an interpretation of the Higgs
fields as the discrete part of space–time in the Connes–Lott formalism for elementary particle La-
grangians. The model provides a setting where both the quantum groups and the Connes approach
to noncommutative geometry can be usefully combined, with some of Connes’ axioms, notably
the first-order condition, replaced by algebraic methods based on the group structure. The noncom-
mutative geometry has nontrivial cohomology and moduli of flat connections, both of which we
compute. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1,2], Connes and Lott proposed a framework for the standard model in elementary
particle physics based on a discrete and typically noncommutative part adjoined to con-
ventional space–time. Fields on this composite space–time appear as multiplets of fields
on ordinary space–time and, for the right choice of discrete part, one obtains exactly the
standard model of particle physics. The Dirac operator on the discrete part encodes the
masses of fermions on usual space–time. This approach ‘packages’ the standard model into
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an elegant framework where also the Higgs field arises naturally. However, most of the pa-
rameters of the standard model are still left undetermined because in the Connes approach
to noncommutative geometry almost any self-adjoint operatorcan be taken on the discrete
part of space–time in the role of Dirac.

Meanwhile coming from quantum groups is a ‘constructive’ approach to noncommutative
geometry which includes also finite groups and other discrete spaces. In this approach,
because of the existence ofq-deformed examples one keeps ‘eye contact’ with conventional
geometric ideas and thereby builds up the different layers of (noncommutative) geometry up
to and including, in recent work[3], the Dirac operator. In other words when the Connes–Lott
formalism and the quantum groups formalism are combined one has natural ‘geometric’
criteria for the choice of Dirac operator on the discrete space–time which translates directly
into predictions in elementary particle physics.

In this paper, we develop a nontrivial model for which these two approaches can be
combined in this way, and explore fully both approaches for this model. The model has
‘discrete part’Z2 × Z2 which has a commutative coordinate algebra but which we equip
with noncommutative differentials coming naturally from the quantum groups approach (a
bicovariant differential calculus in the sense of Woronowicz[4]). The model is too simple
to lead to exactly the standard model (for this one wants the noncommutative algebra
C⊕H⊕M3) but it exhibits many of the same features. Moreover, the model is of independent
interest as a discrete (lattice) model of space–time useful in a variety of other contexts, e.g.
potentially for QCD.

In Section 2we explore the model using Connes’ formalism[1,2]. Thus, starting with
the bicovariant differential calculus suggested by quantum group methods, we take the
natural two-dimensional Dirac operator and apply the method of Connes to induce an entire
exterior algebra, Hodge∗ and other constructions on this discrete 2D ‘space–time’ (not to
be confused with conventional space–time of course but thought of in that way). We find
a Higgs-effect and aspects of symmetry breaking on this discrete space–time. Following
Connes, we work very explicitly with 1-forms and 2-forms, etc. as certain concrete matrices.
The higher forms are not so easily computed by these methods, however.

In Section 3, we construct this exterior algebra, etc. induced byfrom a more alge-
braic point of view using quantum group methods. Here the exterior algebra is obtained
as a quotient of the universal differential calculus by generators and relations, and not
concretely given by particular matrices. We show how many of the computations in the
Connes–Lott model building kit can be done more in line with classical constructions using
these algebraic quantum group methods. Using these methods we are then able to take
the computations ofSection 2much further. We fully compute the exterior algebra, its
quantum de Rham cohomology and its moduli of zero curvature gauge fields, all of which
turn out to be nontrivial. We note that quantum group methods for the noncommutative
geometry on finite groups have recently been developed in some generality[3,5], includ-
ing gravity and a first contact with Connes’ method which we use now (an analysis of the
2-forms). See also[6] where the cohomology and gauge theory for the permutation group
S3 is recently computed. TheZ2 × Z2 model can be viewed as another nontrivial non-
commutative geometry in this family. The use of noncommutative geometry for discrete
space–time itself originates in the bilocal nature of finite difference differentials, and is quite
fundamental.
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In Section 4, we return to the physics by combining this discrete 2D space–time with
conventional space–time to pull out the resulting fairly straightforward model of particle
physics and some predictions ensuing form our particular ‘geometrical’ choice of. In
Section 5, we look at a further chapter of Connes method[7,8], namely the spectral action
and gravity, automorphisms and spin automorphisms. TheZ2 × Z2 model is again simple
enough that all aspects are computable explicitly.

Finally, in Section 6we conclude with some comments on the general lattice(Zm)
n.

Using again our algebraic quantum group methods we show that similar features hold for
higher dimensional(Z2)

n but that on the other hand, form > 2 the nontrivial features of
the model such as the Higgs potential disappear, i.e. are a very specific to the use ofZ2.

2. The 2×2 lattice à la Connes–Lott

In this section, we apply the Connes–Lott model building kit[1] to a 2×2 lattice described
by the associative, unital star algebra

A = C[Z2 × Z2] � f (x, y), x, y = 0,1 mod 2. (1)

We define right translations inx andy directions by

(Rxf )(x, y) := f (x + 1, y), (Ryf )(x, y) := f (x, y + 1), (2)

and the partial derivatives by

∂x := Rx − 1, ∂y := Ry − 1. (3)

The following relations will be useful:

(Rx)
2 = 1, (Ry)

2 = 1, RxRy = RyRx, (4)

(∂x)
2 = −2∂x, (∂y)

2 = −2∂y, ∂x∂y = ∂y∂x, (5)

and the Leibniz rule

∂x(fg) = (∂xf )g + (Rxf )∂xg = (∂xf )Rxg + f ∂xg. (6)

We define the Hilbert space of spinors

H := A⊗ C
2 � ψ =

(
ψR

ψL

)
, ψR,ψL ∈ A (7)

with scalar product

(ψ, ψ̃) :=
1∑

x,y=0

[ψ̄R(x, y)ψ̃R(x, y)+ ψ̄L(x, y)ψ̃L(x, y)], (8)

and the faithful representationρ of the algebraA onH by pointwise multiplication

(ρ(f )ψ)(x, y) := f (x, y)ψ(x, y). (9)
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We will need the relation

(Rx ⊗ 12)ρ(f ) = ρ(Rxf )(Rx ⊗ 12). (10)

The third input item is the Dirac operator that we take to be the lattice Dirac operator,

:= ∂x ⊗ γ x + ∂y ⊗ γ y (11)

with the Hermitian Pauli matrices

γ x :=
(

0 1

1 0

)
, γ y :=

(
0 −i

i 0

)
, γ 3 :=

(
1 0

0 −1

)
. (12)

They satisfy

(γ x)2 = (γ y)2 = 12, γ xγ y = −γ yγ x = iγ 3. (13)

Note that this Dirac operator is self-adjoint without an imaginary i in front. Note also that
this Dirac operator like any lattice Dirac operator cannot satisfy Connes’[2] first-order
condition [11]. In the commutative case of a Riemannian spin manifold, this algebraic
condition reduces to the property that the Dirac operator is a first-order differential operator.
Even without the first-order condition we can use these three items, the algebraA, its
representation onH and the Dirac operator to construct a Connes–Lott model[1].

The first step involves an auxiliary differential algebraΩuniv(A), the universal exterior
algebra ofA:

Ω0
univ(A) := A, (14)

Ω1
univ(A) is spanned overA by symbols da, a ∈ A with relations

d1= 0, d(ab) = (da)b + a db. (15)

Therefore it consists of finite sums of terms of the forma0 da1,

Ω1
univ(A) =



∑
j

a
j

0 daj1, a
j

0, a
j

1 ∈ A

 , (16)

and likewise for higherp,

Ω
p

univ(A) =


∑
j

a
j

0 daj1 · · ·dajp, ajq ∈ A

 . (17)

The differential d is defined by d(a0 da1 · · ·dap) := da0 da1 · · ·dap. The involution∗ is
extended from the algebraA toΩ1

univ(A) by putting

(da)∗ := −d(a∗). (18)

Some authors, including Connes, use(da)∗ := d(a∗)which amounts to replacing d by−id.
With the definition(αβ)∗ = β∗α∗ for formsα, β, the involution is extended to the whole
universal exterior algebra.
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The next step is to extend the representationρ onH from the algebraA to its universal
exterior algebra. This extension is the central piece of Connes’ algorithm:

π : Ωuniv(A) → End(H), π(a0 da1 · · ·dap) := ρ(a0)[ , ρ(a1)] · · · [ , ρ(ap)].

(19)

A straightforward calculation shows thatπ is in fact a representation ofΩuniv(A) as an
algebra with involution, and we are tempted to define also a differential, denoted again by
d, on the imagesπ(Ωp

univ(A)) in each degree by

dπ(α) := π(dα) ∀α ∈ Ω
p

univ(A). (20)

However, this definition does not make sense if there are formsα ∈ Ωuniv(A)withπ(α) = 0
andπ(dα) �= 0. By dividing out these unpleasant forms, Connes constructs a new differential
algebraΩ (A), the interesting object

Ω (A) := π(Ωuniv(A))

J
(21)

with

J := π(d kerπ) =: ⊕
p
Jp (22)

(J for junk). On the quotient now, the differential(20) is well defined. Degree by degree
we have

Ω0(A) = ρ(A) (23)

becauseJ 0 = 0,

Ω1(A) = π(Ω1
univ(A)) (24)

becauseρ is faithful, and in degreep ≥ 2,

Ω
p
(A) = π(Ω

p

univ(A))

π(d kerπp−1)
. (25)

Hereπp−1 denotesπ restricted to degreep−1 forms. We remind the motivation of Connes’
construction: in the continuum,A the algebra of differentiable functions on the 2-torus and

the genuine Dirac operator,Ω (A) is de Rham’s exterior algebra of differential forms.
In our lattice model all forms are explicit 8× 8 matrices. For example inEq. (28)

ωx =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


⊗

(
0 1

1 0

)
(26)

with respect to the basis

{δ00, δ10, δ01, δ11} ⊗
{(

1

0

)
,

(
0

1

)}
.
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Let us compute the 1-forms

π(df ) = [ , ρ(f )] = ρ(∂xf )Rx ⊗ γ x + ρ(∂yf )Ry ⊗ γ y. (27)

We denote byδ00, δ10, δ01, δ11 ∈ A the four delta functions,δ00 for instance is one on
x = 0, y = 0 and zero on the other three points. ThenΩ1(A) is spanned overA by the

two elements

ωx := π(∂xX dX) = Rx ⊗ γ x, ωy := π(∂yY dY ) = Ry ⊗ γ y, (28)

where we have putX := δ10 + δ11 andY := δ01 + δ11. Our generators are Hermitian,
ω∗
x = ωx, ω

∗
y = ωy .

The 2-forms are represented by

π(df dg)= ρ(∂xf Rx∂xg + ∂yf Ry∂yg)⊗ 12

+ ρ(∂xf Rx∂yg − ∂yf Ry∂xg)RxRy ⊗ γ xγ y, (29)

and a straightforward calculation in a basis usingδ-functions shows that in degree 2 the
junk vanishes,J2 = 0. Therefore, we get

(ωx)
2 = (ωy)

2 = 1, ωxωy = −ωyωx, dωx = dωy = 2. (30)

At this stage there is a first contact with gauge theories. Consider the vector space of
Hermitian 1-forms{H ∈ Ω1(A),H ∗ = H }. A general elementH is of the form

H = ρ(hx)ωx + ρ(hy)ωy (31)

with

hx(0,0)= hx(1,0)∗, hx(1,1) = hx(0,1)∗,
hy(0,0)= hy(0,1)∗, hy(1,1) = hy(1,0)∗. (32)

These elementsH are gauge potentials on the lattice. In fact, the space of gauge potentials
carries an affine representation of the group of unitaries

U(A) := {u ∈ A,uu∗ = u∗u = 1} =: G. (33)

In our example this group is Maxwell’s localU(1). In general its action is defined by

Hu := ρ(u)Hρ(u−1)+ ρ(u)d(ρ(u−1)) = ρ(u)Hρ(u−1)+ ρ(u)[ , ρ(u−1)]

= ρ(u)[H + ]ρ(u−1)− . (34)

Hu is the “gauge transformed ofH ”. As usual every gauge potentialH defines a covariant
derivative d+H , covariant under the left action ofG onΩ A:

uω := ρ(u)ω, ω ∈ Ω A, (35)

which means

(d+Hu)uω = u[(d+H)ω]. (36)
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Also we define the curvatureC of H by

C := dH +H 2 ∈ Ω2(A). (37)

The curvatureC is a Hermitian 2-form withhomogeneousgauge transformations

Cu := d(Hu)+ (Hu)2 = ρ(u)Cρ(u−1). (38)

In our example, we get

C = ρ(∂xhx + ∂yhy + 2hx + 2hy + hxRxhx + hyRyhy)ω
2
x

+ ρ(−∂yhx + ∂xhy + hxRxhy − hyRyhx)ωxωy. (39)

In the last step, we construct the Yang–Mills action. To this end we need a scalar product on
the space of 2-forms. But our forms are operators on the finite dimensional Hilbert space
H and we have a natural scalar product.

At this point we must note that althoughρ is faithful π is not, not even after dividing
out the junk; and even worse, the image in End(H) does not remember its degree. (This
complication does not occur in the continuum.) In our example for instance we meet the
8× 8 unit matrix as 0-formρ(1) and as 2-formω2

x . By definition the scalar product of two
forms of different degree is taken to be zero, for forms of same degreep, we define

(ω, ω̃) := tr(ω∗ω̃), ω, ω̃ ∈ Ω
p
(A). (40)

For example,ρ(1), ωx, ωy, ωxωy, ω2
x are orthogonal generators, all normed to

√
8. More

generally, we have

(ρ(f ), ρ(f̃ )) = 2(f, f̃ ), (ρ(f )ωx, ρ(f̃ )ωx) = 2(f, f̃ ),

(ρ(f )ωy, ρ(f̃ )ωy) = 2(f, f̃ ), (41)

(ρ(f )ωxωy, ρ(f̃ )ωxωy) = 2(f, f̃ ), (ρ(f )ω2
x, ρ(f̃ )ω

2
x) = 2(f, f̃ ) (42)

with

(f, f̃ ) :=
1∑

x,y=0

f̄ (x, y)f̃ (x, y). (43)

We are now in position to define the Yang–Mills actionV0(H) = (C,C). By construction
it is a positive, gauge invariant polynomial of fourth order in the values ofhx andhy . Its
minimum,H = 0, breaks the gauge invariance. In order to compute the Yang–Mills action,
we introduce a new variable[12]

ϕ := H + G (44)

with

G := −
∫
G
π(u−1 du)du = −

∫
G
ρ(u−1) ρ(u)du = ωx + ωy, (45)
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and du is the normalized Haar measure of the compact Lie groupG. We decide that the
Dirac operator does not transform under gauge transformations. Thenϕ transforms homo-
geneously

ϕu = ρ(u)ϕρ(u−1). (46)

Let us expand the homogeneous variable as

ϕ = ρ(ϕx)ωx + ρ(ϕy)ωy (47)

with ϕx = hx + 1,ϕy = hy + 1. Then we can rewrite the curvature as

C = ρ(ϕxRxϕx + ϕyRyϕy − 2)ω2
x + ρ(ϕxRxϕy − ϕyRyϕx)ωxωy, (48)

and the Yang–Mills action can be written explicitly

V0 = 2{[|ϕx(0,0)|2 + |ϕy(0,0)|2 − 2]2 + [|ϕx(0,0)|2 + |ϕy(1,1)|2 − 2]2

+ [|ϕx(1,1)|2 + |ϕy(0,0)|2 − 2]2 + [|ϕx(1,1)|2 + |ϕy(1,1)|2 − 2]2

+2|ϕx(0,0)ϕy(1,1)∗ − ϕx(1,1)∗ϕy(0,0)|2 + 2|ϕx(0,0)ϕy(0,0)∗

−ϕx(1,1)∗ϕy(1,1)|2}. (49)

The little group of its minimumH = 0 orϕ := G is the group of rigidU(1) transformations
as in the continuous case. However, unlike in the continuous case, there is a gauge invariant
point,ϕ = 0 orH = − G which is also a local maximum of the Yang–Mills actionV0. The
existence of this gauge invariant point indicates that in this model,H plays simultaneously
the role of the gauge potential and the role of a Higgs scalar. The lattice Yang–Mills action
is its Higgs potential.

The minima of the potentialV0 are continuously degenerate,ϕx(0,0) = ϕx(1,1) =√
2 sinβ, ϕy(0,0) = ϕy(1,1) = √

2 cosβ. All minima have little groupsU(1) except
whenβ is an integer multiple ofπ/2. Then the little group isU(1)2. Let us remark that
this model is similar to Example 3.1 in[12]: its algebra is represented vectorially, but does
not commute with the Dirac operator and its potential has degenerate minima with different
little groups.

3. Quantum group methods for the same model

In the previous section, we have pulled the partial derivatives and Dirac operator ‘out of
a hat’ (motivated of course by the wish to include lattice differentials). In particular, since
the resulting does not obey the first-order condition in Connes’s axioms in any standard
way, it is not motivated from that theory. Rather this choice of differentials comes from
requiring translation invariance under the group structure ofG = Z2 × Z2. This is part of
the ‘quantum groups approach’ where one builds up the different layers of noncommutative
geometry based on the group or quantum group structure. This approach also has a more
algebraic way of working in which we deal algebraically with the differential forms rather
than concretely as matrices. In this section, we explain the construction of the Dirac operator
from the quantum groups point of view and significantly extend the results of the previous
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section using this algebraic language. In particular, it allows us to compute the full exterior
algebra and its cohomology as well as the full moduli of flat connections in the gauge
theory picture that underlies the model. Note that our results here should not be confused
with the question of existence or not of a spectral triple for a given differential calculus on
a finite group, e.g. as in[13] and elsewhere (we are interested in a particular lattice Dirac
operator ).

We will use more algebraic notation. Thus, we work with the universal exterior algebra
Ωuniv(A)explicitly as an algebra with a finite number of left-invariant 1-forms as generators.
We then exhibitΩ (A) not as matrices but as a quotientΩ(A) of the universal one by
relations among the generators (keeping the same names for the generators in the quotient).
For ease of reference, the resulting dictionary with the concrete matrices in the previous
section will be

ωx = π(ex), ωy = π(ey), H = π(α), C = π(F ), ϕ = π(Φ)

(50)

for abstract formsex, ey, α,Φ andF in Ω(A).

3.1. Exterior algebra and cohomology

A differential calculus from the quantum groups point of view means anyA–A bimodule
Ω1(A) and a map d :A→ Ω1(A) obeying the Leibniz rule. WhenA is a Hopf algebra we
demand further thatΩ1(A) is bicovariant[4]. Just as a topological space can admit more
than one differential structure, one has to classify the possibleΩ1(A). From results in[4]
it is immediate for the case ofA = C[G], the functions on a finite group, that the possible
bicovariant calculi are in correspondence with subsets

C ⊂ G, e /∈ C, (51)

wheree is the group identity. The elements ofC label the ‘basic 1-forms’{ea} of the
correspondingΩ1

C(A) and any other 1-form is a unique linear combination of these with
coefficients fromA. The commutation rules and general form of d in this construction are

eaf = Ra(f )ea, df =
∑
a∈C

(∂af )ea, ∂a = Ra − id. (52)

One of the nice features of this construction is that it does not require the group to be
Abelian, i.e. extends to non-Abelian or ‘curved’ lattices.

Also, these calculi are all quotients of the universalΩ1
univ(A)which can either be defined

‘symbolically’ as in the previous section or very explicitly as the elements ofA⊗Awhose
product is zero. Here df = 1⊗ f − f ⊗ 1. For functions on a finite setG, we take forA
a basis ofδ-functions and hence

Ω1
univ(A) = {δg ⊗ δh = δg dδh|g �= h, g, h ∈ G}. (53)

The quotient to our chosenΩ1
C(A) means to set to zero all such elements except for those

for which (g, h) ∈ E, some subset of allowed directions. In the group case this subsetE
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is defined in a translation-invariant manner fromC, namely as pairs(g, h) for which the
difference (in the additive case) lives inC.

In our case we choose the subset

C = {x, y}, x = (1,0), y = (0,1), (54)

so every 1-form is uniquely of the form

α = αxex + αyey, αx, αy ∈ A. (55)

The basic 1-forms can be written explicitly as

ex =
∑

g∈Z2×Z2

δg dδg+x, ey =
∑

g∈Z2×Z2

δg dδg+y. (56)

This is a full description ofΩ1
C(A) as defined by the choice ofC above. Clearly, we have

the same answer as inSection 2where we postulated an operatorand derivedΩ1(A), i.e.

π : Ω1
C(A) ∼= Ω1(A). (57)

Actually this is a well-known general feature; for any linearly independent{γ a} and =
∂aγ

a , we will have the same agreement between the Connes and the quantum groups
approach up to degree 1, by construction. We will work with thisΩ1

C(A) and no longer
write theC explicitly.

Next we consider higher degree forms. For any first-order calculusΩ1(A) there is a
‘linear prolongation’ where we impose only the relations in higher forms inherited from
those at degree 1 and d2 = 0. The latter in our case means

0 = d(∂x(f )ex + ∂y(f )ey)=−2∂x(f )e
2
x − 2∂y(f )ey + ∂x∂y(f )(exey + eyex)

+ ∂x(f )dex + ∂y(f )dex,

and choosingf = δ00 + δ01 − δ10 − δ11 which obeys∂xf = −2f and∂yf = 0, and a
similar function for the roles ofx, y interchanged, one finds

dex = 2e2
x, dey = 2e2

y, exey = −eyex. (58)

The last of these follows from putting the first two into the d2 = 0 equation and then
choosing a function with∂x∂yf �= 0. Beyond this linear prolongation exterior algebra, we
are free in the constructive approach to impose further relations in higher degrees. One
general construction exists due to Woronowicz[4] and for an Abelian group as in our case
it would simply imply thate2

x = e2
y = 0. We do not do this but instead impose the relation

coming out of the Connes machinery inSection 2, namely

e2
x = e2

y (59)

in the exterior algebra. Here the Connes approach and the Woronowicz approach for higher
differentials diverge and we choose the former. ThenΩ2(A) is two-dimensional overA,
being spanned byexey, e2

y . Choosing representatives in the universal exterior algebra for
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these, our explicit calculations(30) in the previous section show that their images underπ

are linearly independent, hence

π : Ω2(A) ∼= Ω2(A) (60)

when constructed in this way.
Next we take the ‘quadratic prolongation’ of thisΩ1,Ω2 to degree 3 and higher, i.e.

impose no further relations than the quadratic ones(58) and (59)already imposed and
whatever is implied by these.

Proposition 3.1. The quadratic exterior algebraΩ(A) generated byex, ey with relations
e2
x = e2

y and{ex, ey} = 0 is isomorphic toΩ (A). Moreover, there is a generating1-form

θ = ex + ey, dα = {θ, α]

for all forms α, where we use commutator on even degree and anticommutator on odd
degree andπ(θ) = G as a matrix.

Proof. First we compute what this quadratic exterior algebra looks like. We then compare
it with Connes construction and check the isomorphism. The remark aboutθ is then an
immediate corollary since it is a general feature of the linear prolongation ofΩ1(A) (where
we have seen thatex, ey anticommute) and hence holds in the quadratic exterior algebra
quotient (as well as in the Woronowicz exterior algebra where it is would be well known).
To compute the quadratic exterior algebra we note that

d(exey + eyex) = 2e2
xey − ex2e2

y + 2e2
yex − ey2e2

x = 0, d(e2
x − e2

y) = 0

automatically, hence there are no implied relations in degree 3 or higher coming from these.
In that case, we have only the relations(59)and the anticommutativity relations. From this
it is easy to see that

Ωp(A) = A〈exep−1
y , e

p
y 〉, p ≥ 1 (61)

is two-dimensional overA = C[Z2 × Z2]. By comparison we recall Connes definition

Ω
p
(A) = πp(Ω

p

univ(A))

Jp
, Jp = πp(d kerπp−1),

whereπp denotesπ in degreep of the universal calculus. The quadratic exterior algebra
is at least as big as the Connes one since it uses only the relations already holding in the
latter in degrees 1 and 2. Hence all that we really need to establish an isomorphism is to
show thatΩp has dimension 2 overC[Z2 ×Z2]. In fact, it suffices to exhibit two elements

of the universal exterior algebra with linearly independent images inπp(Ω
p

univ(A)) for
eachp, after which the result can be proven by induction. Indeed, knowing our result for
Ω

p−1
(A) ∼= Ωp−1(A), we know that the kernel ofπp−1 is generated by the quadratic

relations above. But d of these, by the computation above, lies again in the ideal generated
by these relations, soJp = 0 and henceΩp

(A) = πp(Ω
p

univ(A)).
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There are many ways to come up with the required two elements of the universal exterior
algebra in each degreep. The natural construction is a method that works very generally
for any finite group (see below). Alternatively we can use the representatives implicit in the
ad hoc computations inSection 2. Thus we liftex, ey to the universal exterior algebra as
elements

ẽx = (1− 2X)dX, ẽy = (1− 2Y )dY,

whereX, Y are some functions as inSection 2. Here

∂xX = 1− 2X, (1− 2X)2 = 1, (dX)(1− 2X) = −(1− 2X)dX,

[ , X] = (1− 2X)Rx ⊗ γ x,

and similarly forY . We also needZ = δ10 + δ01 = X + Y − 2XYwhich obeys

(dX)(1− 2Y ) = dZ − (1− 2X)dY, [ , Z] = (1− 2Z)(Rx ⊗ γ x + Ry ⊗ γ y).

From these facts it is not hard to compute

ẽ
p
y = (1− 2Y )[p](dY )p(−1)p(p−1)/2, πp(ẽ

p
y ) = (Ry ⊗ γ y)[p],

where [p] = pmod 2, and

ẽx ẽ
p−1
y = (1− 2X)(dX)(1− 2Y )[p−1](dY )p−1(−1)(p−1)(p−2)/2,

πp(ẽx ẽ
p−1
y ) = (Rx ⊗ γ x)(Ry ⊗ γ y)[p−1].

These are linearly independent for eachp as required. �

A more explicit way to obtain this result, which makes clearer the quotienting from
the universal calculus (and works similarly for any finite groupG), is to note that the
universal calculus on a Hopf algebra is automatically bicovariant and hence in the group
case corresponds to some subset, namelyCuniv = G − {e}. In our particular case it means
a basic 1-form

ex+y =
∑
g

δg dδg+x+y (62)

in addition toex, ey defined in the same way by(56), but now inΩuniv(A). The universal
exterior algebra is the free algebra generated overA by theseeg for all g ∈ G−{e}. Now on
any bicovariant calculus (using Hopf algebra methods) one has a Maurer–Cartan equation,
which, for the universal calculus in our case, comes out as

dex = 2e2
x + {ex, ey} + {ex, ex+y} − {ey, ex+y}, (63)

dex+y = 2e2
x+y + {ex, ex+y} + {ey, ex+y} − {ex, ey}, (64)

and a similar equation for dey . Similarly for any finite group.
With this description ofΩuniv(A) the linear prolongation exterior algebra mentioned

above is just given by setting to zero all theea except those in our conjugacy class. In
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our case, we project outex+y = 0 and this yields the Maurer–Cartan equation for our
calculus and the additional anticommutation relation, i.e.(58) as the linear prolongation.
Likewise the quadratic exterior algebra adds the additional relatione2

x = e2
y . Note also that

the ẽx = ex + ex+y andẽy = ey + ex+y used above project onto the same 1-forms under
the quotient as our generatorsex, ey , but are not so natural from the point of view of the
group structure.

For the products of 1-forms in the universal calculus we note thatδg(dδg+x)δh =
δg d(δg+xδh), etc. Hence it is immediate that

e
p
y =

∑
g

δg dδg+y dδg dδg+y dδg · · · ,

exe
p−1
y =

∑
g

δg dδg+x dδg+x+y dδg+x dδg+x+y · · · (65)

(alternating until the total degree isp). We also need

[ , δg] = (δg+x − δg)Rx ⊗ γ x + (δg+y − δg)Ry ⊗ γ y. (66)

When computingπ of products of theex, ey the δg to the front forces which of the four
δ-functions in each [, δ·] can contribute. Leta, b, c, etc. be chosen from{x, y}. Then
similar to the above, we have

eaebec · · · =
∑
g

δg dδg+a dδg+a+b dδg+a+b+c · · · ,

π(eaebec · · · )=
∑
g

δg(Ra ⊗ γ a)dδg+a+b δg+a+b+c · · ·

= (Ra ⊗ γ a)
∑
g

δg+a dδg+a+b dδg+a+b+c · · ·

= (Ra ⊗ γ a)π(ebec · · · )
after a change of variables. Hence, we find for this description of the universal calculus that

π(eaebec · · · ) = RaRbRc · · · ⊗ γ aγ bγ c · · · . (67)

In fact, we see explicitly thatπ(ex) = Rx ⊗ γ x , π(ey) = Ry ⊗ γ y andπ(ex+y) = 0 is
an algebra homomorphism when extended byπ(fex) = ρ(f )π(ex), etc. Again, this is a
general construction for any finite group, conjugacy class and choice of linearly independent
‘gamma-matrices’. The map

π : Ωuniv(A) → Ω (A), π(ea) =
{
Ra ⊗ γ a for a ∈ C,
0 fora /∈ C ∪ {e}, (68)

is an algebra homomorphism with= ∑
a ∂a ⊗ γ a . Its kernel depends on the relations

among the gamma-matrices; their only homogeneous relations being quadratic in our case
(andG being Abelian) is the reason thatΩ (A) is quadratic.
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This completes our algebraic descriptionΩ(A) of the exterior algebraΩ (A) obtained

by Connes construction for our choice of. The various nonzero dimensions of the exterior
algebra ofC[Z2×Z2] are 1:2:2:2, etc. and there is no top form. This means that one should
not expect a Hodge∗ operator or Poincaré duality for this calculus.

Proposition 3.2. The quantum de Rham cohomology of this differential calculus on
Z2 × Z2 is

H 0 = C · 1, H 1 = C · (ex − ey), Hp = {0}, p ≥ 2.

Proof. If f is a function and df = 0 it meansRx(f ) = f andRy(f ) = f and hencef is
a multiple of the constant identity function. HenceH 0 is spanned by 1. If a 1-form(55) is
closed it means (using the Leibniz rule and d as above) that

0 = dα = (∂xαy − ∂yαx)exey + (∂xαx + ∂yαy + 2αx + 2αy)e
2
y.

We write a 2-formαxyexey + αyye
2
y as a vector(

αxy

αyy

)
,

andα as a vector(
αx

αy

)
.

Then the operator d1 which is d on 1-forms is an 8× 8 matrix

d1 =
(

id − Ry Rx − id

id + Rx id + Ry

)
,

and its kernel is easily found to be four-dimensional. The exact forms inΩ1 form a
three-dimensional subspace of this kernel (since d :Ω0(A) → Ω1(A)has one-dimensional
kernel given by constants). HenceH 1 is one-dimensional and easily seen to be represented
byex−ey . Also note that the image of d1 is therefore four-dimensional also. For the general
dp : Ωp → Ωp+1, we note that

depy =
{

2ep+1
y for p odd,

0 forp even,

as one may easily prove by the graded Leibniz rule and induction. Then

d(fexe
p−1
y + gepy )= (∂xf + ∂yg + 2f )ep+1

y + g depy

+ (∂xg − ∂yf )exe
p
y − fex dep−1

y
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corresponds to the matrix

dp =
(
(−id)p−1 − Ry Rx − id

id + Rx (−id)p−1 + Ry

)
,

which has an order 2 periodicity. In particular,

d2 =
(
−(id + Ry) Rx − id

id + Rx −(id − Ry)

)
.

The transpose of this matrix is easily seen to be conjugate under(
0 1

−1 0

)

to−d1. Hence the kernel of d2 has the same dimension as the kernel of d1, namely 4. Hence
H 2 = {0}. Also the image of d2 is therefore four-dimensional as is the kernel of d3 (by
periodicity) henceH 3 = {0}. The rest vanish by periodicity. �

Let us note as an aside that in the simpler Woronowicz calculus where we would sete2
x =

e2
y = 0, the cohomology by a similar computation is more easily found to beH 0 = C · 1,

H 1 = C · ex ⊕ C · ey andH 2 = C · exey which has dimensions 1:2:1. This is because in
this case the kernel of d on 1-forms is five-dimensional. The exterior algebra in this case
also has the symmetric form with dimensions 1:2:1 overC[Z2 × Z2] but this calculus is
not the one coming out of our Dirac operator using Connes prescription.

3.2. Gauge theory

Returning to our above differential calculus, we can also impose a∗-structure withex, ey
Hermitian as forωx, ωy in Section 2. Note that then

(df )∗ = ex(∂xf )
∗ + ey(∂yf )

∗ = ex∂x(f
∗)+ ey∂y(f

∗) = −df ∗ (69)

using the definition of∂ and the commutation relations(52). (This is not a property of the
Hilbert space representation.) Thus the real cohomology isH 0 = R, etc.

Given a differential calculus one is also free to do ‘gauge theory’ with connections
α ∈ Ω1(A). This is obviously some kind ofU(1) gauge theory. It is worth noting that from
a fully noncommutative geometrical point of view[14], it would be better called ‘U(0)’,
with C the enveloping algebra of the zero Lie algebra (or the coordinate ring of a point).
We assume thatα is Hermitian, which means

Rx(α
∗
x) = αx, Ry(α

∗
y) = αy (70)

in terms of its components. Gauge transformation is byu ∈ U(A) as

αu = uαu−1 + udu−1. (71)
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In our case a unitaryu essentially means a function onZ2 × Z2 with values in the unit
circle,u = eiφ with φ real, hence the above is explicitly

αx �→ uRx(u
−1)αx + u∂xu

−1 = e−i∂xφαx + e−i∂xφ − 1, (72)

and similarly forαy . The gauge-covariant curvatureF(α) = dα+α2 by a similar calculation
to the above is

F(α)= (2αx + 2αy + ∂xαx + ∂yαy + αxRx(αx)+ αyRy(αy))e
2
x

+ (∂xαy − ∂yαx + αxRx(αy)− αyRy(αx))exey.

This is just the same result as inSection 2except that it is obtained now by working in
Ω(A) and its algebraic relations as above, not by explicit matrix calculations. Here the two
coefficients areFxx andFxy say, and transform by conjugation ofF , which means

Fxx �→ Fxx, Fxy �→ e−i∂x+yφFxy, (73)

where∂x+y = RxRy − id.

Proposition 3.3. The moduli space of zero curvature gauge fields modulo gauge equiva-
lence is a real circle

λ2 + µ2 = 2

moduloλ �→ −λ or µ �→ −µ. The corresponding gauge fields are

α = (λ− 1)ex + (µ− 1)ey.

Proof. It is easy to see that these are solutions of the zero curvature equation, which we
leave to the reader. We have to show that any solution is gauge equivalent to one of these.
First, we change variables to

Φ = α + θ, Φa = αa + 1 (74)

in which case the curvature and gauge transformation byu have the form

Fxx = ΦxRxΦx +ΦyRyΦy − 2, Fxy = ΦxRxΦy −ΦyRyΦx,

Φx �→ uRx(u
−1)Φx, (75)

and similarly forΦy . TheF = 0 equation clearly becomes

ΦxRxΦx +ΦyRyΦy = 2, ΦxRxΦy = ΦyRyΦx. (76)

The first of these implies that

Rx(ΦxRxΦx) = (RxΦx)Φx,

Ry(ΦxRxΦx) = Ry(2−ΦyRyΦy) = 2−ΦyRyΦy = ΦxRxΦx,

hence

ΦxRxΦx = λ2, ΦyRyΦy = µ2, λ2 + µ2 = 2 (77)
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for some real constantsλ,µ. Here the reality property ofα translates asΦ∗
x = RxΦx , etc.

and henceΦxRxΦx = |Φx |2 ≥ 0, etc. For the moment, we assume thatλ,µ �= 0 and
consider the degenerate cases later. Next we write out the content of the other equation of
(76)at the four points ofZ2 × Z2,

Φx(0,0)Φy(1,0) = Φy(0,0)Φx(0,1), Φx(1,0)Φy(0,0) = Φy(1,0)Φx(1,1),

(78)

Φx(0,1)Φy(1,1) = Φy(0,1)Φx(0,0), Φx(1,1)Φy(0,1) = Φy(1,1)Φx(1,0).

(79)

In view of (77), most of these equations are redundant and we just have

Φx(0,0)

Φx(0,1)
= Φy(0,0)

Φy(1,0)
.

Let

u(0,0) = 1, u(0,1) = µ

Φy(0,0)
,

u(1,0) = λ

Φx(0,0)
, u(1,1) = Φx(1,1)µ

Φy(0,0)λ
,

which is unitary (each component has modulus 1) in view of(77). Then using the above
explicit equations and(77), one may verify that

Φx = uRxu
−1λ, Φy = uRyu

−1µ

as required. In the special case whereλ = 0 we haveΦx = 0 due to(77). We take

u(0,1) = u(1,1) = 1, u(0,0) = Φy(0,0)

µ
, u(1,0) = Φy(1,0)

µ
,

and verify thatΦy = uRyu−1µ as required and thatu is unitary. Similarly forµ = 0.
In these constructions we are free to chooseλ,µ ≥ 0, for example, but are also free to
choose them in other quadrants of the circle, which means that the different quadrants
are all gauge equivalent to the positive one. Finally, we consider two gauge fields in our
moduli space for positiveλ,µ andλ′, µ′. If related by a gauge transformation, we would
need(u(0,0)/u(0,1))µ = µ′ = (u(0,1)/u(0,0))µ by looking atΦu(0,0) andΦu(0,1).
These imply thatµ′2 = µ2 and henceµ = µ′. Similarly for λ = λ′ and the degenerate
cases. Hence there is precisely one zero curvature gauge field up to equivalence for each
parameter pair in the positive quadrant. That is, the moduli space is exactly the circle modulo
the reflectionsλ �→ −λ,µ �→ −µ (or exactly the quarter circle with positive values).�

We see that there is an entire circle of zero curvature gauge fields with the four quadrants
gauge equivalent to each other. This is the ‘geometry’ of the discrete part of our model. In
particular, the two opposite diametersα = 0, andα = −2θ (orΦ = ±θ ) are in fact gauge
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equivalent. Note also that for the Woronowicz choice withe2
x = e2

y = 0 the above proof

would work in just the same way since(78) and (79)alone imply that|Φx |2 = λ2, |Φy |2 =
µ2 as in(77)but without the constraint that the parameters lie on a circle. In this case the mod-
uli space of zero curvature gauge fields up to equivalence would be the entire plane modulo
the two reflections (a 1/4 plane), i.e. does not have such a nontrivial topology as our case.

Finally, coming from the Connes’ construction, we have an inner product particularly on
forms. This plays the role of Hodge∗ and integration against the top form rolled into one
(even though the former does not appear separately). According toSection 2it is

(f, g) = (fex,gex) = (fey,gey) = (fexey,gexey) = (fe2
x,ge2

x) = 2(f, g)l2 (80)

in terms of the usuall2 inner product on functionsf, g (and zero for other combinations of
our basic forms). As explained inSection 2this defines the gauge field action

1
2(F, F )= ‖Fxx‖2 + ‖Fxy‖2

= ‖|Φx |2 + |Φy |2 − 2‖2 + ‖Rx(Φ
∗
xΦy)− Ry(ΦxΦ

∗
y )‖2 (81)

in terms of the usuall2 norm. Clearly, the aboveF = 0 solutions form a circle of minima
for this action whose origin is the pointα = −θ orΦ = 0. The points on this circle are not
gauge invariant, being equivalent to their reflections in other quadrants as well as defining a
whole manifold of their further gauge transforms. According toSection 2the center point of
the circle is also an extremum, a local maximum and gauge invariant. In this way, the gauge
field action resembles the ‘Mexican hat’ potential for a Higgs field if we viewΦ as an adjoint
Higgs field of some kind rather than as a connection as in our discrete geometry above.

4. Particle physics Lagrangians

In this section, the discrete gauge connections or Higgs’sH are promoted to genuine
fields, i.e. space–time dependent vectors. As already in classical quantum mechanics, this
promotion is achieved by tensorizing with functions. Let us denote byF the algebra of
(smooth, complex valued) functions over four-dimensional space–timeM. Consider the
algebraAt := F⊗A. The group of unitaries of the tensor algebraAt is the gauged version
of the group of unitariesU(A) =: G of the internal algebraA, i.e. the group of functions
from space–time into the groupG. Consider the representationρt := · ⊗ ρ of the tensor
algebra on the tensor productHt := S⊗H, whereS is the Hilbert space of square integrable
spinors on which functions act by multiplication:(f ·ψ)(x) := f (x)ψ(x), f ∈ F, ψ ∈ S.
The space–time points are labeledx and there should not be confusions with the discrete
labelx ∈ Z2. We denote the Dirac operator on the continuous space–timeM by M and its
chirality operator byγ 5. The definition of the tensor product of Dirac operators,

t := M ⊗ 18 + γ 5 ⊗ (82)

comes from noncommutative geometry. We now repeat the above construction for the
infinite dimensional algebraAt with representationρt and Dirac operator t . As already
stated, forA = C, H = C, = 0, the differential algebraΩ

t
(At ) is isomorphic to the
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de Rham algebra of differential formsΩ(M,C). ForA = C
2,H = C

2, we obtain the two
sheeted universe, one of the first examples[9] to exhibit spontaneous symmetry breaking.
For generalA, using the notations of Schücker and Zylinski[10], a Hermitian 1-form

Ht ∈ Ω1

t

(At ), H ∗
t = Ht

contains two pieces, a Hermitian Higgsfield H ∈ Ω0(M,Ω1(A)) and a genuine gauge

fieldA ∈ Ω1(M, iρ(g)) with values in i times the Lie algebra of the group of unitaries

g := {X ∈ A, X∗ +X = 0}, (83)

represented onH. The curvature ofHt

Ct := dtHt +H 2
t ∈ Ω2

t

(At ) (84)

contains three pieces

Ct = C + F − Dϕγ 5, (85)

the ordinary, now space–time dependent curvatureC = dH +H 2, the field strength

F := dMA+ 1
2[A,A] ∈ Ω2(M, ρ(g)), (86)

and the covariant derivative of homogeneous scalar variableϕ := H + G ,

Dϕ = dMϕ + [Aϕ − ϕA] ∈ Ω1(M,Ω1(A)). (87)

Note that the covariant derivative may be applied toϕ thanks to its homogeneous transfor-
mation law,Eq. (46).

The definition of the Higgs potential in the infinite dimensional spaceAt

Vt (Ht ) := (Ct , Ct ) (88)

requires a suitable regularization of the sum of eigenvalues over the space of spinorsS.
Here we have to suppose space–time to be compact and Euclidean. Then, the regularization
is achieved by the Dixmier trace[7] which allows an explicit computation ofVt . One of the
key features in the Connes–Lott scheme is thatVt alone reproduces the complete bosonic
action of a Yang–Mills–Higgs model. Indeed, it consists of three pieces, the Yang–Mills
action, the covariant Klein–Gordon action and an integrated Higgs potential

Vt (A+H) =
∫
M

tr(F ∗ ∗ F)+
∫
M

tr(Dϕ∗ ∗ Dϕ)+
∫
M

∗V (H). (89)

The natural appearance of both the kinetic term for the Higgs and its potential is the key
feature of the approach. Recall that in particle phenomenology these two pieces are added
to the Yang–Mills action opportunistically in order to reconcile a model with experiment.
Here these two pieces are derived from geometry.

As the preliminary Higgs potentialV0, the (final) Higgs potentialV is calculated from
the finite dimensional triple(A,H, ),

V := V0 − tr[αC∗αC] = tr[(C − αC)∗(C − αC)], (90)
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where the linear map

α : Ω2(A) → ρ(A)+ π(d kerπ1) (91)

is determined by the two equations

tr[R∗(C − αC)] = 0 for allR ∈ ρ(A), (92)

tr[K∗αC] = 0 for allK ∈ π(d kerπ1). (93)

All remaining traces are over the finite dimensional Hilbert spaceH. We denote the Hodge
star by∗·. It should not be confused with the involution·∗. Note the ‘wrong’ relative sign
of the third term inEq. (89). The sign is in fact correct for an Euclidean space–time.

A similar feature holds in the fermionic sector, where the completely covariant action
ψ∗( t + Ht)ψ reproduces the complete fermionic action of a Yang–Mills–Higgs model.
We denote by

ψ = ψR + ψL ∈ Ht = S ⊗ (HR ⊕HL),

ψL := 1
2(1− γ 3)ψ, ψR := 1

2(1+ γ 3)ψ, (94)

the multiplets of chiral spinors and byψ∗ the dual ofψ with respect to the scalar product
of the concerned Hilbert space. We set

G =M∗ ⊗
(

0 1

0 0

)
+M⊗

(
0 0

1 0

)
. (95)

M will turn out to be the fermionic mass matrix. Similarly, we set

H =: h̃∗ ⊗
(

0 1

0 0

)
+ h̃⊗

(
0 0

1 0

)
∈ Ω1(A), (96)

ϕ = H + G =: ϕ̃∗ ⊗
(

0 1

0 0

)
+ ϕ̃ ⊗

(
0 0

1 0

)
∈ Ω1(A). (97)

Then

ψ∗( t +Ht)ψ =
∫
M

∗ψ∗( M + γ (A))ψ +
∫
M

∗(ψ∗
Lh̃γ

5ψR + ψ∗
Rh̃

∗γ 5ψL)

+
∫
M

∗(ψ∗
LMγ 5ψR + ψ∗

RM
∗γ 5ψL)

=
∫
M

∗ψ∗( M + γ (A))ψ +
∫
M

∗(ψ∗
Lϕ̃γ

5ψR + ψ∗
Rϕ̃

∗γ 5ψL) (98)

containing the ordinary Dirac action and the Yukawa couplings. Note the unusual appearance
of γ 5 in the fermionic action(98). Just as the wrong signs in the bosonic action(89), these
γ 5 are proper to the Euclidean signature and disappear in the Minkowski signature. For
details, see the first reference of[1, Example 2], and[15, Section 6.9].
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In our lattice model the junkπ(d kerπ1) is zero and solvingEqs. (92) and (93)is easy

C − αC = ρ(ϕxRxϕy − ϕyRyϕx) ωxωy, (99)

implying that upon tensorizing with continuous space–time the Higgs potential,

V = 2{|ϕx(0,0)ϕy(1,1)∗ − ϕx(1,1)∗ϕy(0,0)|2
+ |ϕx(0,0)ϕy(0,0)∗ − ϕx(1,1)∗ϕy(1,1)|2}, (100)

loses its precious property of spontaneous symmetry breaking. We only know of very
few examples where the spontaneous symmetry breaking is lost after tensorizing, the first
example being the Connes–Lott model of electro-weak forces with one generation of leptons
[1]. Details can be found in[15, Section 4.6].

5. Discrete diffeomorphisms and spectral action

Let us summarize Connes’ strategy up to this point. He reformulates Riemannian ge-
ometry algebraically in terms of spectral triples(A,H, ). This reformulation is general
enough to never use the commutativity of the algebraA of functions. It is special enough to
include generalizations of differential forms, exterior multiplication and derivative and the
combination of Hodge star and integration needed to define a Yang–Mills action. On a finite
dimensional spectral triple, such a Yang–Mills action looks generically like a Higgs poten-
tial and breaks the group of unitaries inA spontaneously. Tensorizing the finite dimensional
spectral triple with the infinite dimensional, commutative spectral triple of a Riemannian
manifold, ‘almost commutative geometry’, produces a complete Yang–Mills–Higgs model.
In this setting of almost commutative geometry, the Higgs scalar is reduced to a pseudo-force
of the Yang–Mills force. This situation is perfectly analogous to Minkowskian geometry
(special relativity) reducing the magnetic force to a pseudo-force of the electric force: take
an electric charge at rest,�B = 0, and change coordinates to a frame moving with constant ve-
locity. After this Lorentz boost, a magnetic field�B appears. Every pseudo-force is attached to
a coordinate transformation, another example being centrifugal and Coriolis forces attached
to the transformation to the rotating frame. The Higgs scalar is attached to a gauge trans-
formation which in noncommutative geometry is a generalized coordinate transformation.

With his fluctuating metric, Connes goes one step further[2]. His algebraic reformula-
tion of Riemannian geometry of course contains a generalization of the Riemannian metric,
the Dirac operator. This generalization is special enough to allow for an algebraic refor-
mulation of general relativity in terms of the commutative spectral triple of a Riemannian
manifold. The kinematical part of this algebraic reconstruction is the fluctuating metric, the
dynamical part is the spectral action[8]. Repeating this algebraic construction for almost
commutative spectral triples produces in addition to general relativity some very special
Yang–Mills–Higgs models. In this almost commutative setting, therefore, these very spe-
cial Yang–Mills–Higgs forces are reduced to pseudo-forces of gravity. The electromagnetic,
weak and strong forces are among these very special Yang–Mills–Higgs forces.

The central tool to construct the fluctuating metric is the lift of the group of automor-
phisms and unitaries ofA to the Hilbert spaceH. For the commutative triple of a Riemannian
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manifold, the automorphisms are the diffeomorphisms of the manifold,the general coordi-
nate transformations, and their image under the lift are the local spin transformations. The
unitaries are gaugedU(1) transformations. In the presence of the real structure, they are
all lifted to the identity. Let us compute the lift in our lattice example. The automorphism
group of our algebraA = C[Z2 × Z2] is

Aut(A) = S4 � P, (101)

the group of permutations of the four points. It is the discrete version of the diffeomorphism
group. We disregard complex conjugation, that is we do not considerA to be real. The
group of unitaries

U(A) = U(1)4 � u(x, y) (102)

is the discrete version of Maxwell’s gauge group. Simultaneously, it plays the role of the
gauged Lorentz group. We need to map both groups to the group of automorphisms lifted
to the Hilbert spaceH,

AutH(A) := {U : H→ H,UU∗ = U∗U = 1, [U, γ3] = 0,

∀f ∈ AUρ(f )U−1 = ρ(f̃ ); ∃f̃ ∈ A}. (103)

As mentioned our example does not satisfy Connes’ first-order condition. Anyway, we
would have a hard time to choose the sign of the square of the real structure since this
square is+1 in dimension zero,−1 in dimension two. Therefore, we do not introduce a
real structure in the definition of the lifted automorphisms. Every lifted automorphismU

projects down to an automorphismP = p(U) with P(f ) = f̃ . In our example, we have

AutH(A) = S4 � (U(1)4L × U(1)4R) � (P, uL(x, y), uR(x, y)). (104)

Let us denote the lifting homomorphism by(L, :) : Aut(A) � U(A) → AutH(A). It
must satisfy(p ◦ (L, :))(P, u) = P . Let us start with the automorphisms alone,L(P ) =
(β(P ), uL(P ), uR(P )). The most general solution isβ(P ) = P , uL(P ) = σL(P )14,
uR(P ) = σR(P )14, where the two functionsσL,R : S4 → Z2 are either identically one
or the signature of the permutation, four possibilities. We have written an 14 to indicate
that the unitaries are rigid, i.e. independent ofx andy. As unitary 8× 8 matrices the four
possible lifts take the form

L(P ) = P ⊗ [ 1
2(σL + σR)12 + 1

2(σL − σR)γ
3]. (105)

They only induce trivial fluctuations of the metric

L(P ) L(P )−1 = ±(∂̃x ⊗ γ x + ∂̃y ⊗ γ y), ∂̃· = P∂·P−1. (106)

This is in sharp contrast to the continuous case where the lifted diffeomorphisms induce
the general curved metric starting from the flat one. Fortunately, upon tensorizing with a
continuous space–time we obtain a general internal Dirac operator that acquires the status
of the fermionic mass matrix. In the almost commutative setting, we will also see the lift of
the unitaries of our internal algebraA = C[Z2 × Z2].

The automorphisms ofAt = F ⊗ A close to the identity are diffeomorphisms of
space–timeφ ∈ Diff (M). The group of unitariesU(At ) is the gaugedMU(1)4 whose
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elements are functions fromM toU(1)4 that we denoted byu = (u(0,0), u(1,0), u(0,1),
u(1,1)) as before. The group of automorphisms lifted to the Hilbert space has as component
connected to the identity

AutHt
(At ) = Diff (M) �

M(Spin(4)× U(1)4L × U(1)4R) � (φ, uL, uR). (107)

The lift L(φ) is described explicitly in[16] and locally it induces the general curved Dirac
operator onM by fluctuating the flat one

L(φ) flatL(φ)
−1 = i e−1µ

a γ a
[

∂

∂xµ
+ 1

4
ωbcµγ

bγ c
]
= M (108)

with tetrad coefficientseaµ and their torsionless spin connection 1-formωbcµ dxµ. Let us
concentrate on lifting the unitaries::(u) = ρt (u), i.e.uL = uR meets all requirements:: is
a group homomorphism, and for every unitaryu inU(At ), :(u) is a unitary operator onHt ,
:(u) commutes withγ 5⊗γ 3 andp◦:(u) = 1At

. We are ready to fluctuate the metric again

:(u) t :(u)
−1 = : t fluct

= i e−1µ
a γ a

[
∂

∂xµ
⊗ 18 + 1

4
ωbcµγ

bγ c ⊗ 18 − 14 ⊗ iρ(Aµ)

]
+ γ 5 ⊗ [H + ]

= i e−1µ
a γ a

[
∂

∂xµ
⊗ 18+ 1

4
ωbcµγ

bγ c ⊗ 18−14 ⊗ iρ(Aµ)

]
+ γ 5 ⊗ ϕ

(109)

with the Yang–Mills connection 1-form iAµ dxµ = udu−1. As in the Connes–Lott scheme,
the Higgs scalar appears as a connection 1-form with respect to the internal spectral triple,
H = π(udu−1)/i =: ϕ− . As before we expandϕ =: ρ(ϕx)ωx+ρ(ϕy)ωy with four, now
space–time dependent complex coefficients,ϕx(0,0) = ϕx(1,0)∗, ϕx(1,1) = ϕx(0,1)∗,
ϕy(0,0) = ϕy(0,1)∗, ϕy(1,1) = ϕy(1,0)∗. The kinematics is defined by a metric encoded
in M or its tetrad coefficients, by a Yang–Mills potential, i.e. a 1-formA with values in i
times the Lie algebra ofU(A) and by four complex Higgs scalars.

In general relativity, the dynamics of the metric is essentially fixed by a diffeomorphism
invariant action functional. In the setting of spectral triples, there is a natural automorphism
invariant action functional, the trace of the fluctuated Dirac operator, i.e. of the Dirac operator
that is minimally coupled to the metric, to the Yang–Mills potential and to the Higgs scalars.
Since the Dirac operator is self-adjoint and anticommutes with the chiralityγ 5 ⊗ γ 3, its
spectrum is even and it is enough to compute the trace of its square. Being divergent, this
trace is regularized by a functionf : R+ → R+ of sufficiently fast decrease and the
celebrated spectral action of Chamseddine and Connes[8] reads

S[g,A,Φ] = tr f

( 2
t fluct

Λ

)
. (110)

For convenience, we have put in a scale factorΛ carrying the dimension of the eigenvalues
of the Dirac operator, say GeV. Asymptotically for largeΛ, the spectral action reproduces
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the Einstein–Hilbert action and a complete Yang–Mills–Higgs action. In this limit the reg-
ularizing functionf is universal in the sense that the spectral action only depends on its
first three ‘moments’,f0 := ∫∞

0 tf(t)dt , f2 := ∫∞
0 f (t)dt andf4 = f (0). In particular,

its Higgs potential is

V = λ tr8(ϕ
∗ϕϕ∗ϕ)− µ2

2
tr8(ϕ

∗ϕ), λ = π

f4
,

µ2

2
=
(
f2

f4

)
Λ2. (111)

A straightforward calculation gives

V = 2λ{[|ϕx(0,0)|2 + |ϕy(0,0)|2]2 + [|ϕx(0,0)|2 + |ϕy(1,1)|2]2 + [|ϕx(1,1)|2
+ |ϕy(0,0)|2]2 + [|ϕx(1,1)|2 + |ϕy(1,1)|2]2 + 2|ϕx(0,0)ϕy(1,1)∗

−ϕx(1,1)∗ϕy(0,0)|2 + 2|ϕx(0,0)ϕy(0,0)∗ − ϕx(1,1)∗ϕy(1,1)|2}
−µ2{ϕx(0,0)∗ϕx(0,0)+ ϕx(1,1)∗ϕx(1,1)

+ϕy(0,0)∗ϕy(0,0)+ ϕy(1,1)∗ϕy(1,1)}. (112)

As its brother fromSection 2, Eq. (49), this potential has continuously degenerate minima,
ϕx(0,0) = ϕx(1,1) = µ/(2

√
λ) sinβ, ϕy(0,0) = ϕy(1,1) = µ/(2

√
λ) cosβ. All minima

break the gaugedMU(1)4 spontaneously down to a single, rigidU(1), except whenβ is an
integer multiple ofπ/2. Then the little group isU(1)2.

6. Concluding remarks

We conclude the paper with a brief outline, using again our quantum group methods, of
what happens for other lattices

G = (Zm)
n. (113)

Clearly, one might turn to these for better approximations ofn-dimensional tori.
We takeA = C[(Zm)

n] of course and the usualn-dimensionalγ -matricesγ i , i =
1, . . . , n. The calculus has the allowed directions which are the standard basis vectorsC =
{�xi |i = 1, . . . , n} of the lattice, where�xi = (0, . . . ,0,1,0, . . . ,0) denotes the element
of (Zm)

n with 1 in the ith place. Thus,Ω1(A) is spanned by{ei |i = 1, . . . , n}, where
ei =: e�xi is a shorthand. Likewise∂i = Re�xi − id is the lattice differential in theith
direction in (Zm)

n. This description is necessarily isomorphic to the 1-forms in Connes
construction for =∑

i ∂i ⊗ γ i .
For the higher forms, we first compute the linear prolongation ofΩ1(A). Whatever the

ConnesΩ (A) is, it must be a quotient of this. Using the method ofSection 3.1, we start
with the universal exterior algebra with generators{e�g|�g ∈ (Zm)

n, �g �= 0}. The linear
prolongation consists of setting to zero all except the{ei}. However, the Maurer–Cartan
equations in the universal exterior algebra are

de�g = {θuniv, e�g} −
∑

�b+�c=�g,�b,�c �=0

e�be�c, θuniv =
∑
�g �=0

e�g. (114)
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This is a special case of the Maurer–Cartan equations for any Hopf algebra and in any case
easily verified from the standard form of thee�g in terms ofδ-functions onG. Projecting out
all but the{ei} gives

dei = {θ, ei}, θ =
∑
i

ei , (115)

0 =
∑

�xi+�xj=�g
eiej ∀�g ∈ (Zm)

n, �g �= 0. (116)

In all these equations, addition of vectors is modm. If m > 2 Eq. (116)has two nonempty
cases. When�g = 2�xi for somei, we have the equation

e2
i = 0, (117)

and when�g = �xi + �xj for somei �= j , we have

{ei, ej } = 0. (118)

Hence in this case the linear prolongation already coincides with the Woronowicz exterior
algebra, which in turn is the ‘trivial’ one similar to that ofR

n. The Connes exterior alge-
bra cannot have stronger relations than this and hence this is alsoΩ (A) in this case. In
particular,e2

i = 0 eliminates all of the interesting features of our model such as the Higgs
potential and spontaneous symmetry breaking. The model in effect resembles more like flat
space.

On the other hand,m = 2 is precisely the case where 2�xi = 0 and is therefore not one
of the possibilities for�g in (116). Thus in this case the linear prolongation has only the
relation{ei, ej } = 0 for i �= j , in particulare2

i �= 0 as for ourZ2 × Z2 case. We also have
Hermitian and the same properties for the∂i as in then = 2 case. In particular, we have

the same features of the Higgs potential, etc. Finally, since(Ri)
2 = id as before, we have

π(e2
i ) = (Ri⊗γ i)2 = 1 and similar features for the higher forms. In summary, ourZ2×Z2

model is typical of the general(Z2)
n for n ≥ 2.

Finally, we remark that the methods in this paper do apply to other finite groups just as
well. For example, they could also be applied to a non-Abelian group or ‘curved lattice’
as in[3,6]. The first of these papers also proposes a general choice ofγ -matrices (namely
built from an irreducible representation of the finite group) and explicitly proposes a Dirac
operator for the permutation groupS3 in this way. Development of that model along similar
lines to that here could be an interesting topic for further work.

We also note[17] which was archived shortly before ours, in which a general class of
Dirac operators on Abelian groups is proposed, although without any of the special features
of our specificZ2 × Z2 model.
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[14] T. Brzezínski, S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993)

591–638.
[15] T. Schücker, Geometries and forces, in: P. Almeida (Ed.), Proceedings of the EMS Summer School on

Noncommutative Geometry and Applications, Portugal, 1997, in press. hep-th/9712095.
[16] T. Schücker, Spin group and almost commutative geometry. hep-th/0007047.
[17] J. Dai, X.-C. Song, Noncommutative geometry of lattices and staggered fermions. hep-th/0101130.


	Z2&times;Z2 lattice as a Connes-Lott-quantum group model
	Introduction
	The 2&times;2 lattice à la Connes-Lott
	Quantum group methods for the same model
	Exterior algebra and cohomology
	Gauge theory

	Particle physics Lagrangians
	Discrete diffeomorphisms and spectral action
	Concluding remarks
	Acknowledgements
	References


